OU Portal
Log In
Welcome
Applicants
Z6_60GI02O0O8IDC0QEJUJ26TJDI4
Error:
Javascript is disabled in this browser. This page requires Javascript. Modify your browser's settings to allow Javascript to execute. See your browser's documentation for specific instructions.
{}
Close
Publikační činnost
Probíhá načítání, čekejte prosím...
publicationId :
tempRecordId :
actionDispatchIndex :
navigationBranch :
pageMode :
tabSelected :
isRivValid :
Record type:
stať ve sborníku (D)
Home Department:
Ústav pro výzkum a aplikace fuzzy modelování (94410)
Title:
KLN: a deep neural network architecture for keypoint localization
Citace
Hurtík, P. a Tyshchenko, O. KLN: a deep neural network architecture for keypoint localization.
In:
IEEE Third International Conference Data Stream Mining & Processing 2020: Proceedings of IEEE Third International Conference Data Stream Mining & Processing 2020 2020-08-21 Lvov, Ukraina.
Lvov, Ukraina: IEEE, 2020. ISBN 978-1-7281-3215-0.
Subtitle
Publication year:
2020
Obor:
Obecná matematika
Number of pages:
6
Page from:
neuvedeno
Page to:
neuvedeno
Form of publication:
Tištená verze
ISBN code:
978-1-7281-3215-0
ISSN code:
Proceedings title:
Proceedings of IEEE Third International Conference Data Stream Mining & Processing 2020
Proceedings:
Mezinárodní
Publisher name:
IEEE
Place of publishing:
Lvov, Ukraina
Country of Publication:
Sborník vydaný v zahraničí
Název konference:
IEEE Third International Conference Data Stream Mining & Processing 2020
Místo konání konference:
Lvov, Ukraina
Datum zahájení konference:
Typ akce podle státní
příslušnosti účastníků:
Celosvětová akce
WoS code:
EID:
2-s2.0-85093655719
Key words in English:
keypoint detection, neural networks, deep learning, panoramic images, SIFT
Annotation in original language:
Pixel-precision level localization of keypoints is an essential step for stitching panoramic images as these keypoints are matching, and their locations are used for computing stitching transformation. We recall the main standard computer vision techniques for keypoint localization and focus on the precise localization. Based on the SIFT technique, we design a neural network architecture containing an encoder, a latent representation handler, and a decoder. In contrast to domain-agnostic neural network architectures, the developed encoder reflects the scale-space construction as well as the difference of Gaussians estimation used in SIFT. In the benchmark, we show that our architecture has a higher number of keypoints localized with pixel precision considering flips, intensity changes, and blurrings than other standard and neural network-based approaches.
Annotation in english language:
References
Reference
R01:
RIV/61988987:17610/20:A21024FM
Complementary Content
Deferred Modules
${title}
${badge}
${loading}
Deferred Modules