OU Portal
Log In
Welcome
Applicants
Z6_60GI02O0O8IDC0QEJUJ26TJDI4
Error:
Javascript is disabled in this browser. This page requires Javascript. Modify your browser's settings to allow Javascript to execute. See your browser's documentation for specific instructions.
{}
Close
Publikační činnost
Probíhá načítání, čekejte prosím...
publicationId :
tempRecordId :
actionDispatchIndex :
navigationBranch :
pageMode :
tabSelected :
isRivValid :
Record type:
stať ve sborníku (D)
Home Department:
Katedra zdravotně-sociálních studií (20100)
Title:
A Memetic and Adaptive Continuous Ant Colony Optimization Algorithm
Citace
Omran, M. a Poláková, R. A Memetic and Adaptive Continuous Ant Colony Optimization Algorithm.
In:
ICSCCW 2019: 10th International Conference on Theory and Application of Soft Computing, Computing with Words and Perceptions - ICSCCW-2019 2019-08-27 Praha.
Springer, Cham, 2019. s. 158-166. ISBN 978-3-030-35248-6.
Subtitle
Publication year:
2019
Obor:
Number of pages:
9
Page from:
158
Page to:
166
Form of publication:
Tištená verze
ISBN code:
978-3-030-35248-6
ISSN code:
Proceedings title:
10th International Conference on Theory and Application of Soft Computing, Computing with Words and Perceptions - ICSCCW-2019
Proceedings:
Publisher name:
Springer, Cham
Place of publishing:
neuvedeno
Country of Publication:
Název konference:
ICSCCW 2019
Místo konání konference:
Praha
Datum zahájení konference:
Typ akce podle státní
příslušnosti účastníků:
Celosvětová akce
WoS code:
EID:
Key words in English:
Continuous optimisation, Anc colony Optimisation algorithm, diversity of solutions, local search optimisation, experimental comparison
Annotation in original language:
This paper proposes two new variants of the Continuous Ant Colony Opti-mization algorithm, ACOR. The first variant, called the Adaptive ACOR (AACOR), uses the relative diversity of the solutions in the algorithm's ar-chive to adapt its parameters. The second variant, called the memetic AACOR (MAACOR), uses a local search operator to improve the perfor-mance of AACOR. Both variants were tested on the 22 IEEE CEC 2011 real-world optimization problems and compared with ACOR and two state-of-the-art optimization methods. The results demonstrate the merits of the proposed approaches.
Annotation in english language:
References
Reference
R01:
RIV/61988987:17200/19:A20020EY
Complementary Content
Deferred Modules
${title}
${badge}
${loading}
Deferred Modules