OU Portal
Log In
Welcome
Applicants
Z6_60GI02O0O8IDC0QEJUJ26TJDI4
Error:
Javascript is disabled in this browser. This page requires Javascript. Modify your browser's settings to allow Javascript to execute. See your browser's documentation for specific instructions.
{}
Zavřít
Publikační činnost
Probíhá načítání, čekejte prosím...
publicationId :
tempRecordId :
actionDispatchIndex :
navigationBranch :
pageMode :
tabSelected :
isRivValid :
Typ záznamu:
stať ve sborníku (D)
Domácí pracoviště:
Ústav pro výzkum a aplikace fuzzy modelování (94410)
Název:
Identifying commit patterns with Topic Modeling
Citace
HŮLA, J. Identifying commit patterns with Topic Modeling.
In:
ISCAMI 2019: Praha.
Praha: České vysoké učení technické v Praze, 2019.
Podnázev
Rok vydání:
2019
Obor:
Informatika
Počet stran:
1
Strana od:
Strana do:
Forma vydání:
Tištená verze
Kód ISBN:
Kód ISSN:
Název sborníku:
Sborník:
Mezinárodní
Název nakladatele:
České vysoké učení technické v Praze
Místo vydání:
Praha
Stát vydání:
Sborník vydaný v ČR
Název konference:
ISCAMI 2019
Místo konání konference:
Praha
Datum zahájení konference:
Typ akce podle státní
příslušnosti účastníků akce:
Celosvětová akce
Kód UT WoS:
EID:
Klíčová slova anglicky:
pattern mining, commits, Machine learning on source code
Popis v původním jazyce:
Professional software developers write code in small chunks (called commits) which enable clean versioning of software. Best practices recommend that these chunks should be conceptually simple and should not mix many thematically different changes of software together. This contribution aims to present an analysis of change patterns in 6 million files which were extracted from 600 most popular software repositories written in Java. Every change pattern contains a set of edits in the file where every edit is represented by the type of change (insert, delete, move, update) and type of entity (for loop, a function call, if statement, etc.). We also include structural information of every edit (i.e. for loop was inserted into the body of a function). Based on these features, we run topic modeling to identify patterns of changes in files.
Popis v anglickém jazyce:
Seznam ohlasů
Ohlas
R01:
Complementary Content
Deferred Modules
${title}
${badge}
${loading}
Deferred Modules