OU Portal
Log In
Welcome
Applicants
Z6_60GI02O0O8IDC0QEJUJ26TJDI4
Error:
Javascript is disabled in this browser. This page requires Javascript. Modify your browser's settings to allow Javascript to execute. See your browser's documentation for specific instructions.
{}
Close
Publikační činnost
Probíhá načítání, čekejte prosím...
publicationId :
tempRecordId :
actionDispatchIndex :
navigationBranch :
pageMode :
tabSelected :
isRivValid :
Record type:
stať ve sborníku (D)
Home Department:
Katedra matematiky (31100)
Title:
Community detection with graph neural networks
Citace
Mojžíšek, D. a HŮLA, J. Community detection with graph neural networks.
In:
ISCAMI 2019: Proceedings of the 20th International Student Conference on Applied Mathematics and Informatics 2019-05-16 Praha.
Praha: České vysoké učení technické v Praze, 2019.
Subtitle
Publication year:
2019
Obor:
Informatika
Number of pages:
1
Page from:
neuvedeno
Page to:
neuvedeno
Form of publication:
Tištená verze
ISBN code:
ISSN code:
Proceedings title:
Proceedings of the 20th International Student Conference on Applied Mathematics and Informatics
Proceedings:
Mezinárodní
Publisher name:
České vysoké učení technické v Praze
Place of publishing:
Praha
Country of Publication:
Sborník vydaný v ČR
Název konference:
ISCAMI 2019
Conference venue:
Praha
Datum zahájení konference:
Typ akce podle státní
příslušnosti účastníků:
Celosvětová akce
WoS code:
EID:
Key words in English:
communities, modules, community detection, graph neural networks
Annotation in original language:
Detecting communities or classifying nodes is an important task which may be accomplished via different (well explored) approaches. The most popular are spectral and probabilistic methods. With the recent expansion of data-driven methods which often replace hand-designed heuristics, new possibilities for community detection have appeared. One of them is a new branch of neural networks. Namely Graph Neural Networks (GNNs) which are an extension of Convolutional Neural Networks to graph-structured data. This contribution aims to present GNNs, compare them to traditional methods and show an example of implementation.
Annotation in english language:
References
Reference
R01:
Complementary Content
Deferred Modules
${title}
${badge}
${loading}
Deferred Modules