OU Portal
Log In
Welcome
Applicants
Z6_60GI02O0O8IDC0QEJUJ26TJDI4
Error:
Javascript is disabled in this browser. This page requires Javascript. Modify your browser's settings to allow Javascript to execute. See your browser's documentation for specific instructions.
{}
Close
Publikační činnost
Probíhá načítání, čekejte prosím...
publicationId :
tempRecordId :
actionDispatchIndex :
navigationBranch :
pageMode :
tabSelected :
isRivValid :
Record type:
stať ve sborníku (D)
Home Department:
Katedra informatiky a počítačů (31400)
Title:
The application perspective of izhikevich spiking neural model - the initial experimental study
Citace
Bartoň, A., Volná, E. a Kotyrba, M. The application perspective of izhikevich spiking neural model - the initial experimental study.
In:
23rd International Conference on Soft Computing, MENDEL 2017: Advances in Intelligent Systems and Computing 2017-06-20 Brno, Czech Republic.
Switzerland: Springer Verlag, 2019. s. 223-232. ISBN 978-331997887-1.
Subtitle
Publication year:
2019
Obor:
Informatika
Number of pages:
10
Page from:
223
Page to:
232
Form of publication:
Tištená verze
ISBN code:
978-331997887-1
ISSN code:
2194-5357
Proceedings title:
Advances in Intelligent Systems and Computing
Proceedings:
Mezinárodní
Publisher name:
Springer Verlag
Place of publishing:
Switzerland
Country of Publication:
Sborník vydaný v zahraničí
Název konference:
23rd International Conference on Soft Computing, MENDEL 2017
Místo konání konference:
Brno, Czech Republic
Datum zahájení konference:
Typ akce podle státní
příslušnosti účastníků:
Celosvětová akce
WoS code:
EID:
2-s2.0-85051770912
Key words in English:
Experimental study; Izhikevich model; Parameters impact; Spike rate; Spiking; Spiking neuron
Annotation in original language:
In this paper we explore the Izhikevich spiking neuron model especially the synergy of the dimensionless model parameters and their implications to the spiking of the neuron itself. This spiking, principally the spike rate, is highly important from the application point of view. The understanding of the model is useful for better spiking network design, when the input neuronal stimulus is transferred to the spikes in order to produce faster network response. Whereas we can achieve the better neuronal response of the spiking network through utilization of the correct model parameters which impact to the neurons and the network neuronal dynamics significantly. The model parameters setup were described, demonstrated and spiking neuron model output and behaviour examined. The influence of the input current was also described in a given experimental study.
Annotation in english language:
References
Reference
R01:
RIV/61988987:17310/19:A2001XEA
Complementary Content
Deferred Modules
${title}
${badge}
${loading}
Deferred Modules