OU Portal
Log In
Welcome
Applicants
Z6_60GI02O0O8IDC0QEJUJ26TJDI4
>
Publ3 search
Error:
Javascript is disabled in this browser. This page requires Javascript. Modify your browser's settings to allow Javascript to execute. See your browser's documentation for specific instructions.
{}
Zavřít
Publikační činnost
Probíhá načítání, čekejte prosím...
publicationId :
tempRecordId :
actionDispatchIndex :
navigationBranch :
pageMode :
tabSelected :
isRivValid :
Typ záznamu:
stať ve sborníku (D)
Domácí pracoviště:
Katedra informatiky a počítačů (31400)
Název:
Fuzzy-Expert system for customer behavior prediction
Citace
Frankeová, M., Farana, R., Formánek, I. a Walek, B. Fuzzy-Expert system for customer behavior prediction.
In:
7th Computer Science On-line Conference, CSOC 2018: Artifical Intelligence and Algorithms in Intelligent Systems 2018-04-25 Prague.
Springer, 2019. s. 122-131. ISBN 978-331991188-5.
Podnázev
Rok vydání:
2019
Obor:
Počet stran:
10
Strana od:
122
Strana do:
131
Forma vydání:
Tištená verze
Kód ISBN:
978-331991188-5
Kód ISSN:
2194-5357
Název sborníku:
Artifical Intelligence and Algorithms in Intelligent Systems
Sborník:
Mezinárodní
Název nakladatele:
Springer
Místo vydání:
neuvedeno
Stát vydání:
Sborník vydaný v zahraničí
Název konference:
7th Computer Science On-line Conference, CSOC 2018
Místo konání konference:
Prague
Datum zahájení konference:
Typ akce podle státní
příslušnosti účastníků:
Celosvětová akce
Kód UT WoS:
000460247600013
EID:
2-s2.0-85047845321
Klíčová slova anglicky:
behavior, customer, fuzzy-expert system, prediction
Popis v původním jazyce:
The paper deals with the modelling of customer’s behavior in the shop of the retail chain. The paper shows that the fuzzy-expert system is a good tool for describing the behavior of a system, where the customer’s behavior is influenced by weather conditions and by events in the surroundings of the shop. The article also offers a procedure that allows dividing the system into logical units and reducing the number of necessary rules. The paper also details how the individual parts of the system have been verified. On specific real-time data the paper also presents the detection of incorrect (stereotypical) steps done by experts in compiling the knowledge base. The procedures that have been used have enabled effective identification and elimination of the errors. The advantage of our procedure was also that the IF-THEN rules that have been used were easily readable and understandable. At the end of the research work the expert system has been tested by means of available historical sales forecast data to optimize inventory, reduce storage costs, and reduce the risk of depreciation due to exceeding maximum warranty period. Achieved results have proved that fuzzy-expert systems are suitable also for the modelling of customer’s behavior and can provide us good results.
Popis v anglickém jazyce:
Seznam ohlasů
Ohlas
R01:
RIV/61988987:17310/19:A2001VEK
Complementary Content
Deferred Modules
${title}
${badge}
${loading}
Deferred Modules