OU Portal
Log In
Welcome
Applicants
Z6_60GI02O0O8IDC0QEJUJ26TJDI4
Error:
Javascript is disabled in this browser. This page requires Javascript. Modify your browser's settings to allow Javascript to execute. See your browser's documentation for specific instructions.
{}
Close
Publikační činnost
Probíhá načítání, čekejte prosím...
publicationId :
tempRecordId :
actionDispatchIndex :
navigationBranch :
pageMode :
tabSelected :
isRivValid :
Record type:
stať ve sborníku (D)
Home Department:
Ústav pro výzkum a aplikace fuzzy modelování (94410)
Title:
Detection of structural breaks and perceptionally important points in time series
Citace
Novák, V. Detection of structural breaks and perceptionally important points in time series.
In:
FLINS 2018: Data Science and Knowledge Engineering for Sensing Decision Support 2018-08-21 Belfast.
New Jersey: World Scientific, 2018. s. 1417-1424. ISBN 978-981-3273-22-1.
Subtitle
Publication year:
2018
Obor:
Obecná matematika
Number of pages:
8
Page from:
1417
Page to:
1424
Form of publication:
Tištená verze
ISBN code:
978-981-3273-22-1
ISSN code:
Proceedings title:
Data Science and Knowledge Engineering for Sensing Decision Support
Proceedings:
Mezinárodní
Publisher name:
World Scientific
Place of publishing:
New Jersey
Country of Publication:
Sborník vydaný v zahraničí
Název konference:
FLINS 2018
Conference venue:
Belfast
Datum zahájení konference:
Typ akce podle státní
příslušnosti účastníků:
Celosvětová akce
WoS code:
EID:
Key words in English:
Fuzzy transform; F-transform; evaluative linguistic expressions; fuzzy natural logic; time series
Annotation in original language:
In this paper we suggest to use special fuzzy modeling techniques for detection of structural breaks and perceptionally important points in time series, namely the fuzzy (F-)transform and one method of Fuzzy Natural Logic (FNL). The idea is based on application of the F^1-transform which makes it possible to estimate effectively slope of time series over an imprecisely specified area (ignoring its possible volatility) and its evaluation by a suitable evaluative linguistic expression. The method is computationally very effective.
Annotation in english language:
References
Reference
R01:
RIV/61988987:17610/18:A1901UUN
Complementary Content
Deferred Modules
${title}
${badge}
${loading}
Deferred Modules