OU Portal
Log In
Welcome
Applicants
Z6_60GI02O0O8IDC0QEJUJ26TJDI4
Error:
Javascript is disabled in this browser. This page requires Javascript. Modify your browser's settings to allow Javascript to execute. See your browser's documentation for specific instructions.
{}
Close
Publikační činnost
Probíhá načítání, čekejte prosím...
publicationId :
tempRecordId :
actionDispatchIndex :
navigationBranch :
pageMode :
tabSelected :
isRivValid :
Record type:
stať ve sborníku (D)
Home Department:
Katedra informatiky a počítačů (31400)
Title:
Big Data Filtering Through Adaptive Resonance Theory
Citace
BARTOŇ, A., Volná, E. a Kotyrba, M. Big Data Filtering Through Adaptive Resonance Theory.
In:
9th Asian Conference on Intelligent Information and Database Systems (ACIIDS): Intelligent Information and Database Systems 2017-04-03 Kanazawa, JAPAN.
Switzerland: Springer Verlag, 2017. s. 382-391. ISBN 978-3-319-54430-4.
Subtitle
Publication year:
2017
Obor:
Informatika
Number of pages:
10
Page from:
382
Page to:
391
Form of publication:
Elektronická verze
ISBN code:
978-3-319-54430-4
ISSN code:
0302-9743
Proceedings title:
Intelligent Information and Database Systems
Proceedings:
Mezinárodní
Publisher name:
Springer Verlag
Place of publishing:
Switzerland
Country of Publication:
Sborník vydaný v zahraničí
Název konference:
9th Asian Conference on Intelligent Information and Database Systems (ACIIDS)
Conference venue:
Kanazawa, JAPAN
Datum zahájení konference:
Typ akce podle státní
příslušnosti účastníků:
Celosvětová akce
WoS code:
000401653300037
EID:
2-s2.0-85018524011
Key words in English:
Adaptive Resonance Theory (ART); Big data; Control neural network; Data Filtering
Annotation in original language:
The aim of the article is to use Adaptive Resonance Theory (ART1) for Big Data Filtering. ART1 is used for preprocessing of the training set. This allows finding typical patterns in the full training set and thus covering the whole space of solutions. The neural network adapted by a reduced training set has a greater ability of generalization. The work also discusses the influence of vigilance parameter settings for filtering the training set. The proposed method Big Data Filtering through Adaptive Resonance Theory is experimentally verified to control the behavior of an autonomous robot in an unknown environment. All obtained results are evaluated in the conclusion.
Annotation in english language:
References
Reference
R01:
RIV/61988987:17310/17:A1801N0K
Complementary Content
Deferred Modules
${title}
${badge}
${loading}
Deferred Modules