OU Portal
Log In
Welcome
Applicants
Z6_60GI02O0O8IDC0QEJUJ26TJDI4
Error:
Javascript is disabled in this browser. This page requires Javascript. Modify your browser's settings to allow Javascript to execute. See your browser's documentation for specific instructions.
{}
Close
Publikační činnost
Probíhá načítání, čekejte prosím...
publicationId :
tempRecordId :
actionDispatchIndex :
navigationBranch :
pageMode :
tabSelected :
isRivValid :
Record type:
stať ve sborníku (D)
Home Department:
Ústav pro výzkum a aplikace fuzzy modelování (94410)
Title:
Introducing Subtypes in Fuzzy Type Theory
Citace
Novák, V. Introducing Subtypes in Fuzzy Type Theory.
In:
19th Czech-Japan seminar on Data Analysis and Decision Making: Proc. 19th Czech-Japan seminar on Data Analysis and Decision Making 2016-09-05 Matsumoto.
Osaka: Osaka University, 2016. s. 42-51.
Subtitle
Publication year:
2016
Obor:
Obecná matematika
Number of pages:
10
Page from:
42
Page to:
51
Form of publication:
Paměťový nosič
ISBN code:
ISSN code:
Proceedings title:
Proc. 19th Czech-Japan seminar on Data Analysis and Decision Making
Proceedings:
Mezinárodní
Publisher name:
Osaka University
Place of publishing:
Osaka
Country of Publication:
Sborník vydaný v zahraničí
Název konference:
19th Czech-Japan seminar on Data Analysis and Decision Making
Conference venue:
Matsumoto
Datum zahájení konference:
Typ akce podle státní
příslušnosti účastníků:
Celosvětová akce
WoS code:
EID:
Key words in English:
fuzzy type theory; type theory; EQ-algebra
Annotation in original language:
Fuzzy type theory (FTT) is a higher-order fuzzy logic that generalizes classical type theory (TT). Recall that the latter was established over 100 years ago by B. Russel. Its formalism was later well elaborated by A. Church and L. Henkin. In this theory, each formula A of the type \alpha is interpreted by some function. It was proved that FTT is complete w.r.t. general models. In some applications it is necessary to express syntactically also partial functions The solution (known also in TT) is to introduce the, so called, subtypes. In this paper we elaborate a new kind of fuzzy type theory extended by subtypes and prove completeness.
Annotation in english language:
References
Reference
R01:
Complementary Content
Deferred Modules
${title}
${badge}
${loading}
Deferred Modules