OU Portal
Log In
Welcome
Applicants
Z6_60GI02O0O8IDC0QEJUJ26TJDI4
Error:
Javascript is disabled in this browser. This page requires Javascript. Modify your browser's settings to allow Javascript to execute. See your browser's documentation for specific instructions.
{}
Close
Publikační činnost
Probíhá načítání, čekejte prosím...
publicationId :
tempRecordId :
actionDispatchIndex :
navigationBranch :
pageMode :
tabSelected :
isRivValid :
Record type:
stať ve sborníku (D)
Home Department:
Ústav pro výzkum a aplikace fuzzy modelování (94410)
Title:
Bijective Fuzzy Relations: a Graded Approach
Citace
Daňková, M. Bijective Fuzzy Relations: a Graded Approach.
In:
INTERNATIONAL CONFERENCE ON FUZZY COMPUTATION THEORY AND APPLICATIONS 2016: Proceedings of the 8th International Joint Conference on Computational Intelligence (IJCCI 2016) - Volume 2: FCTA 2016-11-09 Porto.
Portugal: SciTePress, 2016. s. 42-50. ISBN 978-989-758-201-1.
Subtitle
Publication year:
2016
Obor:
Obecná matematika
Number of pages:
9
Page from:
42
Page to:
50
Form of publication:
Elektronická verze
ISBN code:
978-989-758-201-1
ISSN code:
Proceedings title:
Proceedings of the 8th International Joint Conference on Computational Intelligence (IJCCI 2016) - Volume 2: FCTA
Proceedings:
Mezinárodní
Publisher name:
SciTePress
Place of publishing:
Portugal
Country of Publication:
Sborník vydaný v zahraničí
Název konference:
INTERNATIONAL CONFERENCE ON FUZZY COMPUTATION THEORY AND APPLICATIONS 2016
Místo konání konference:
Porto
Datum zahájení konference:
Typ akce podle státní
příslušnosti účastníků:
Celosvětová akce
WoS code:
000393153800003
EID:
2-s2.0-85006504067
Key words in English:
Fuzzy Relations; Fuzzy Functions; Partial Fuzzy Functions; Bijective Mappings; Fuzzy Class Theory
Annotation in original language:
V tomto příspěvku ukážeme výsledky ohledně fuzzy bijektivních zobrazení v tzv. graded tvaru.
Annotation in english language:
In this contribution, we will extend results relating to representability of a fuzzy function using a crisp function. And additionally, we show for which functions there exist fuzzy function of a specific form. Our notion of fuzzy function has a graded character. More precisely, any fuzzy relation has a property of being a fuzzy function that is expressed by a truth degree. And it consists of two natural properties: extensionality and functionality. We will also provide a separate study of these two properties.
References
Reference
R01:
RIV/61988987:17610/16:A1701I35
Complementary Content
Deferred Modules
${title}
${badge}
${loading}
Deferred Modules