OU Portal
Log In
Welcome
Applicants
Z6_60GI02O0O8IDC0QEJUJ26TJDI4
Error:
Javascript is disabled in this browser. This page requires Javascript. Modify your browser's settings to allow Javascript to execute. See your browser's documentation for specific instructions.
{}
Close
Publikační činnost
Probíhá načítání, čekejte prosím...
publicationId :
tempRecordId :
actionDispatchIndex :
navigationBranch :
pageMode :
tabSelected :
isRivValid :
Record type:
stať ve sborníku (D)
Home Department:
Ústav pro výzkum a aplikace fuzzy modelování (94410)
Title:
Population-size adaptation through diversity-control mechanism for differential evolution
Citace
Poláková, R., Tvrdík, J. a Bujok, P. Population-size adaptation through diversity-control mechanism for differential evolution.
In:
Mendel 2016: MENDEL 2016 22nd International Conference on Soft Computing 2016-06-08 Brno.
Brno: Brno University of Technology, 2016. s. 49-56. ISBN 9788021453654.
Subtitle
Publication year:
2016
Obor:
Informatika
Number of pages:
8
Page from:
49
Page to:
56
Form of publication:
Tištená verze
ISBN code:
9788021453654
ISSN code:
1803-3814
Proceedings title:
MENDEL 2016 22nd International Conference on Soft Computing
Proceedings:
Mezinárodní
Publisher name:
Brno University of Technology
Place of publishing:
Brno
Country of Publication:
Sborník vydaný v ČR
Název konference:
Mendel 2016
Conference venue:
Brno
Datum zahájení konference:
Typ akce podle státní
příslušnosti účastníků:
Celosvětová akce
WoS code:
EID:
Key words in English:
global optimization, differential evolution, population diversity, parameter adaptation
Annotation in original language:
A new method of the population-size adaptation for differential evolution (DE) is proposed. The adaptation is based on decreasing or increasing the population size in dependence on the current measure of the population diversity. The proposed method was implemented to six DE variants using a fixed population size in their original versions. The DE variants for experimental comparison were selected from the set of the state-of-the-art algorithms as well as from the well-performing variants that have appeared in literature recently. Experimental comparison was carried out on the CEC 2014 benchmark suite at three levels of problem dimension. The results of the experimental comparison demonstrate the benefit provided by the application of the proposed adaptive mechanism for the performance of the algorithms.
Annotation in english language:
References
Reference
R01:
RIV/61988987:17610/16:A1701H21
Complementary Content
Deferred Modules
${title}
${badge}
${loading}
Deferred Modules