OU Portal
Log In
Welcome
Applicants
Z6_60GI02O0O8IDC0QEJUJ26TJDI4
Error:
Javascript is disabled in this browser. This page requires Javascript. Modify your browser's settings to allow Javascript to execute. See your browser's documentation for specific instructions.
{}
Close
Publikační činnost
Probíhá načítání, čekejte prosím...
publicationId :
tempRecordId :
actionDispatchIndex :
navigationBranch :
pageMode :
tabSelected :
isRivValid :
Record type:
stať ve sborníku (D)
Home Department:
Katedra informatiky a počítačů (31400)
Title:
Adaptive Differential Evolution: SHADE with Competing Crossover Strategies
Citace
Bujok, P. a Tvrdík, J. Adaptive Differential Evolution: SHADE with Competing Crossover Strategies.
In:
14th International Conference on Artificial Intelligence and Soft Computing: Lecture Notes in Artificial Intelligence 9119 2015-06-14 Zakopane, Polsko.
New York: Springer, 2015. Springer, 2015. s. 329-339. ISBN 978-3-319-19323-6.
Subtitle
Publication year:
2015
Obor:
Informatika
Number of pages:
11
Page from:
329
Page to:
339
Form of publication:
Tištená verze
ISBN code:
978-3-319-19323-6
ISSN code:
0302-9743
Proceedings title:
Lecture Notes in Artificial Intelligence 9119
Proceedings:
Mezinárodní
Publisher name:
Springer
Place of publishing:
New York
Country of Publication:
Sborník vydaný v zahraničí
Název konference:
14th International Conference on Artificial Intelligence and Soft Computing
Conference venue:
Zakopane, Polsko
Datum zahájení konference:
Typ akce podle státní
příslušnosti účastníků:
Celosvětová akce
WoS code:
EID:
2-s2.0-84958535039
Key words in English:
global optimization; differential evolution; self-adaptation; competing crossover; experimental comparison; CEC 2013 test suite
Annotation in original language:
Possible improvement of a successful adaptive SHADE variant of differential evolution is addressed. Exploitation of exponential crossover was applied in two newly proposed SHADE variants. The algorithms were compared experimentally on CEC 2013 test suite used as a benchmark. The results show that the variant using adaptive strategy of the competition of two types of crossover is significantly more efficient than other SHADE variants in 7 out of 28 problems and not worse in the others. Thus, this SHADE with competing crossovers can be considered superior to original SHADE algorithm.
Annotation in english language:
References
Reference
R01:
RIV/61988987:17310/15:A1601DQH
Complementary Content
Deferred Modules
${title}
${badge}
${loading}
Deferred Modules