OU Portal
Log In
Welcome
Applicants
Z6_60GI02O0O8IDC0QEJUJ26TJDI4
Error:
Javascript is disabled in this browser. This page requires Javascript. Modify your browser's settings to allow Javascript to execute. See your browser's documentation for specific instructions.
{}
Close
Publikační činnost
Probíhá načítání, čekejte prosím...
publicationId :
tempRecordId :
actionDispatchIndex :
navigationBranch :
pageMode :
tabSelected :
isRivValid :
Record type:
stať ve sborníku (D)
Home Department:
Ústav pro výzkum a aplikace fuzzy modelování (94410)
Title:
Time series grouping and trend forecast using F1-transform and fuzzy natural logic
Citace
Perfiljeva, I., Novák, V., Romanov, A. a Yarushkina, N. Time series grouping and trend forecast using F1-transform and fuzzy natural logic.
In:
Decision Making and Soft Computing 9.
New Jersey: World Scientific, 2014. World Scientific, 2014. s. 143-148. ISBN 978-981-4619-96-7.
Subtitle
Publication year:
2014
Obor:
Obecná matematika
Number of pages:
6
Page from:
143
Page to:
148
Form of publication:
Tištená verze
ISBN code:
978-981-4619-96-7
ISSN code:
Proceedings title:
Decision Making and Soft Computing 9
Proceedings:
Mezinárodní
Publisher name:
World Scientific
Place of publishing:
New Jersey
Country of Publication:
Sborník vydaný v zahraničí
Název konference:
11th International FLINS Conference
Conference venue:
Joao Pessoa
Datum zahájení konference:
Typ akce podle státní
příslušnosti účastníků:
Celosvětová akce
WoS code:
EID:
Key words in English:
Fuzzy transform; Fuzzy natural logic; F-transform; Time series
Annotation in original language:
We present an idea to group time series according to the course of their local trends that can be well captured by the $F^1$-transform. On the basis of an adjoint time series consisting of a sequence of F1-transform components, we form a grouping of time series with closely related trends. This enables us to forecast trend of one selected principal time series and on the basis of it, to forecast trends of the other time series from this grouping. This is realized using the methods of fuzzy natural logic, namely automatic generation of linguistic description from the data and then deriving a conclusion using the perception based logical deduction.
Annotation in english language:
References
Reference
R01:
RIV/61988987:17610/14:A1501BQB
Complementary Content
Deferred Modules
${title}
${badge}
${loading}
Deferred Modules