OU Portal
Log In
Welcome
Applicants
Z6_60GI02O0O8IDC0QEJUJ26TJDI4
Error:
Javascript is disabled in this browser. This page requires Javascript. Modify your browser's settings to allow Javascript to execute. See your browser's documentation for specific instructions.
{}
Zavřít
Publikační činnost
Probíhá načítání, čekejte prosím...
publicationId :
tempRecordId :
actionDispatchIndex :
navigationBranch :
pageMode :
tabSelected :
isRivValid :
Typ záznamu:
stať ve sborníku (D)
Domácí pracoviště:
Ústav pro výzkum a aplikace fuzzy modelování (94410)
Název:
A Functional Approach to Cardinality of Finite Fuzzy Sets
Citace
Holčapek, M. A Functional Approach to Cardinality of Finite Fuzzy Sets.
In:
Information Processing and Management of Uncertainty in Knowledge-Based Systems.
Heidelberg: Springer, 2014. Springer, 2014. s. 234-243. ISBN 978-3-319-08854-9.
Podnázev
Rok vydání:
2014
Obor:
Obecná matematika
Počet stran:
10
Strana od:
234
Strana do:
243
Forma vydání:
Tištená verze
Kód ISBN:
978-3-319-08854-9
Kód ISSN:
1865-0929
Název sborníku:
Information Processing and Management of Uncertainty in Knowledge-Based Systems
Sborník:
Mezinárodní
Název nakladatele:
Springer
Místo vydání:
Heidelberg
Stát vydání:
Sborník vydaný v zahraničí
Název konference:
15th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems
Místo konání konference:
Montpellier, Francie
Datum zahájení konference:
Typ akce podle státní
příslušnosti účastníků akce:
Celosvětová akce
Kód UT WoS:
000345122900024
EID:
Klíčová slova anglicky:
Fuzzy sets; fuzzy classes; graded equipollence; cardinal theory of finite fuzzy sets
Popis v původním jazyce:
In this contribution, we present a functional approach to the cardinality of finite fuzzy sets, it means an approach based on one-to-one correspondences between fuzzy sets. In contrast to one fixed universe of discourse used for all fuzzy sets, our theory is developed within a class of fuzzy sets which universes of discourse are countable sets, and finite fuzzy sets are introduced as fuzzy sets with finite supports. We propose some basic operations with fuzzy sets as well as two constructions - fuzzy power set and fuzzy exponentiation. To express the fact that two finite fuzzy sets have approximately the same cardinality we propose the concept of graded equipollence. Using this concept we provide graded versions of several well-known statements, including the Cantor-Bernstein theorem and the Cantor theorem.
Popis v anglickém jazyce:
In this contribution, we present a functional approach to the cardinality of finite fuzzy sets, it means an approach based on one-to-one correspondences between fuzzy sets. In contrast to one fixed universe of discourse used for all fuzzy sets, our theory is developed within a class of fuzzy sets which universes of discourse are countable sets, and finite fuzzy sets are introduced as fuzzy sets with finite supports. We propose some basic operations with fuzzy sets as well as two constructions - fuzzy power set and fuzzy exponentiation. To express the fact that two finite fuzzy sets have approximately the same cardinality we propose the concept of graded equipollence. Using this concept we provide graded versions of several well-known statements, including the Cantor-Bernstein theorem and the Cantor theorem.
Seznam ohlasů
Ohlas
R01:
RIV/61988987:17610/14:A1501B7F
Complementary Content
Deferred Modules
${title}
${badge}
${loading}
Deferred Modules