OU Portal
Log In
Welcome
Applicants
Z6_60GI02O0O8IDC0QEJUJ26TJDI4
>
Publ3 search
Error:
Javascript is disabled in this browser. This page requires Javascript. Modify your browser's settings to allow Javascript to execute. See your browser's documentation for specific instructions.
{}
Close
Publikační činnost
Probíhá načítání, čekejte prosím...
publicationId :
tempRecordId :
actionDispatchIndex :
navigationBranch :
pageMode :
tabSelected :
isRivValid :
Record type:
stať ve sborníku (D)
Home Department:
Katedra informatiky a počítačů (31400)
Title:
Acoustic signal processing via neural network towards motion capture systems
Citace
Volná, E., Kotyrba, M. a Jarušek, R. Acoustic signal processing via neural network towards motion capture systems.
In:
IPCV'13.
USA: CSREA Press, 2013. CSREA Press, 2013. s. 692-696. ISBN 1-60132-252-6.
Subtitle
Publication year:
2013
Obor:
Informatika
Number of pages:
5
Page from:
692
Page to:
696
Form of publication:
Elektronická verze
ISBN code:
1-60132-252-6
ISSN code:
Proceedings title:
IPCV'13
Proceedings:
Mezinárodní
Publisher name:
CSREA Press
Place of publishing:
USA
Country of Publication:
Sborník vydaný v zahraničí
Název konference:
International Conference on Image Processing, Computer Vision, and Pattern Recognition
Místo konání konference:
Las Vagas, USA
Datum zahájení konference:
Typ akce podle státní
příslušnosti účastníků:
Celosvětová akce
WoS code:
EID:
Key words in English:
Acoustic signal processing, neural networks, motion capture system, Fourier transform
Annotation in original language:
The aim of this article is to outline possibilities of sound and its physical properties during shooting of moving objects. Attention was devoted to the specific location of a fixed point in the space and time. We present two proposed methods that are based on neural networks. We also proposed appropriate topologies of the systems that depend on the required accuracy, acoustic properties and selected sound technologies. At first, we identified a distance between an active transmitter and a receiver on the basis of sound pulses transmitted from transmitters in the defined domain. After that a neural network uses obtained distances between transmitters and a receiver as its inputs to determine an actual position of the receiver in space. We developed two models, which outcomes are compared in conclusion.
Annotation in english language:
References
Reference
R01:
RIV/61988987:17310/13:A1401900
Complementary Content
Deferred Modules
${title}
${badge}
${loading}
Deferred Modules