OU Portal
Log In
Welcome
Applicants
Z6_60GI02O0O8IDC0QEJUJ26TJDI4
Error:
Javascript is disabled in this browser. This page requires Javascript. Modify your browser's settings to allow Javascript to execute. See your browser's documentation for specific instructions.
{}
Zavřít
Publikační činnost
Probíhá načítání, čekejte prosím...
publicationId :
tempRecordId :
actionDispatchIndex :
navigationBranch :
pageMode :
tabSelected :
isRivValid :
Typ záznamu:
stať ve sborníku (D)
Domácí pracoviště:
Katedra informatiky a počítačů (31400)
Název:
Recognition of damaged letters based on neural network analysis
Citace
Kocian, V., Volná, E. a Janošek, M. Recognition of damaged letters based on neural network analysis.
In:
Mendel 2013.
Brno: Brno Univerzity of Technology, 2013. Brno Univerzity of Technology, 2013. s. 209-214. ISBN 978-80-214-4755-4.
Podnázev
Rok vydání:
2013
Obor:
Informatika
Počet stran:
6
Strana od:
209
Strana do:
214
Forma vydání:
Tištená verze
Kód ISBN:
978-80-214-4755-4
Kód ISSN:
1803-3814
Název sborníku:
Mendel 2013
Sborník:
Mezinárodní
Název nakladatele:
Brno Univerzity of Technology
Místo vydání:
Brno
Stát vydání:
Sborník vydaný v ČR
Název konference:
19th International Conference on Soft computing Mendel 2013
Místo konání konference:
Brno
Datum zahájení konference:
Typ akce podle státní
příslušnosti účastníků akce:
Celosvětová akce
Kód UT WoS:
EID:
Klíčová slova anglicky:
Artificial neural network, Hebb network, Adaline, backpropagation, pattern recognition, classifiers
Popis v původním jazyce:
This paper describes an experimental study based on the application of neural networks for pattern recognition of numbers stamped (imprinted) on ingots. The same task was also solved using fuzzy logic. The ability of all tested neural networks is sufficient to learn all the test patterns, as was demonstrated during experimental works. Unfortunately, amount of training patterns provided by Company KMC Group, s.r.o. were very small and they were very different from test samples. In the article, appropriate types of binarization were discussed so as to extract sufficient information regarding classification via neural networks. There were the optimization of the training set proposed based on the training set analysis. Next, we also proposed way of optimization of parameters belonging to adaptation rules of used neural networks. All experimental results were mutually compared in conclusion.
Popis v anglickém jazyce:
Seznam ohlasů
Ohlas
R01:
RIV/61988987:17310/13:A14017Z6
Complementary Content
Deferred Modules
${title}
${badge}
${loading}
Deferred Modules