OU Portal
Log In
Welcome
Applicants
Z6_60GI02O0O8IDC0QEJUJ26TJDI4
Error:
Javascript is disabled in this browser. This page requires Javascript. Modify your browser's settings to allow Javascript to execute. See your browser's documentation for specific instructions.
{}
Close
Publikační činnost
Probíhá načítání, čekejte prosím...
publicationId :
tempRecordId :
actionDispatchIndex :
navigationBranch :
pageMode :
tabSelected :
isRivValid :
Record type:
stať ve sborníku (D)
Home Department:
Katedra informatiky a počítačů (31400)
Title:
Methodology for Elliott waves pattern recognition
Citace
Kotyrba, M., Volná, E., Janošek, M., Habiballa, H. a Bražina, D. Methodology for Elliott waves pattern recognition.
In:
PROCEEDINGS 27th European Conference on Modelling and Simulation ECMS 2013.
Sbr.-Dudweiler, Germany: European Council for Modelling and Simulation, 2013. European Council for Modelling and Simulation, 2013. s. 349-354. ISBN 978-0-9564944-6-7.
Subtitle
Publication year:
2013
Obor:
Informatika
Number of pages:
918
Page from:
349
Page to:
354
Form of publication:
Tištená verze
ISBN code:
978-0-9564944-6-7
ISSN code:
Proceedings title:
PROCEEDINGS 27th European Conference on Modelling and Simulation ECMS 2013
Proceedings:
Mezinárodní
Publisher name:
European Council for Modelling and Simulation
Place of publishing:
Sbr.-Dudweiler, Germany
Country of Publication:
Sborník vydaný v zahraničí
Název konference:
ECMS 2013
Místo konání konference:
Aalesund, Norway
Datum zahájení konference:
Typ akce podle státní
příslušnosti účastníků:
Celosvětová akce
WoS code:
EID:
Key words in English:
Elliott waves, Fibonacci analysis, neural networks, pattern recognition, prediction.
Annotation in original language:
The article is focused on an analysis and pattern recognition in time series, which are fractal in nature. The proposal methodology is based on an interdisciplinary approach that combines artificial neural networks, analytic programming, Elliott wave theory and knowledge modelling. The heart of the methodology are a methods, which is able to recognize Elliott waves structures including their deformation in the charts and helps to more efficient prediction of its trend. The functionality of the proposed methodology was validated in experimental simulations, for whose implementation was designed and created an application environment. Experimental simulations have shown that the method is usable to a wider class of problems than the theory itself allows only Elliott waves.This paper introduces a methodology that allows analysis of Elliot wave?s patterns in time series for the purpose of a trend prediction.
Annotation in english language:
References
Reference
R01:
RIV/61988987:17310/13:A14017TQ
Complementary Content
Deferred Modules
${title}
${badge}
${loading}
Deferred Modules