OU Portal
Log In
Welcome
Applicants
Z6_60GI02O0O8IDC0QEJUJ26TJDI4
Error:
Javascript is disabled in this browser. This page requires Javascript. Modify your browser's settings to allow Javascript to execute. See your browser's documentation for specific instructions.
{}
Close
Publikační činnost
Probíhá načítání, čekejte prosím...
publicationId :
tempRecordId :
actionDispatchIndex :
navigationBranch :
pageMode :
tabSelected :
isRivValid :
Record type:
stať ve sborníku (D)
Home Department:
Katedra informatiky a počítačů (31400)
Title:
Parallel Migration Model Employing Various Adaptive Variants of Differential Evolution
Citace
Bujok, P. a Tvrdík, J. Parallel Migration Model Employing Various Adaptive Variants of Differential Evolution.
In:
Lecture Notes in Computer Science 7269.
Berlin Heidelberg: Springer-Verlag, 2012. Springer-Verlag, 2012. s. 39-47. ISBN 978-3-642-29352-8.
Subtitle
Publication year:
2012
Obor:
Informatika
Number of pages:
9
Page from:
39
Page to:
47
Form of publication:
Tištená verze
ISBN code:
978-3-642-29352-8
ISSN code:
0302-9743
Proceedings title:
Lecture Notes in Computer Science 7269
Proceedings:
Mezinárodní
Publisher name:
Springer-Verlag
Place of publishing:
Berlin Heidelberg
Country of Publication:
Sborník vydaný v zahraničí
Název konference:
ICAISC 2012 - SIDE 2012
Místo konání konference:
Zakopane
Datum zahájení konference:
Typ akce podle státní
příslušnosti účastníků:
Celosvětová akce
WoS code:
000314209500005
EID:
Key words in English:
global optimization, differential evolution, self-adaptation, parallel model, experimental comparison
Annotation in original language:
Six adaptive variants of differential evolution are applied in a parallel migration model with a star topology. The parallel algorithm with several different settings of parameters controlling the migration was experimentally compared with the adaptive serial algorithms in benchmark problems of dimension $D=30$. The parallel algorithm was more efficient than the best serial adaptive DE variant in a half of the problems.
Annotation in english language:
The problem of optimal partitioning by minimizing pooled-within-variance of groups is addressed. Three state-of-the-art adaptive differential evolution algorithms are compared on four real-world data sets. A~novel hybrid differential evolution algorithm, including k-means algorithm for local search is proposed. The experimental comparison is done with either the plain adaptive differential evolution variants or the hybrid algorithms. Experimental results showed that hybrid algorithms are substantially better preforming when compared with plain differential evolution variants. Among hybrid variants, the competitive differential evolution appeared to be the most efficient.
References
Reference
R01:
RIV/61988987:17310/12:A13015SG
Complementary Content
Deferred Modules
${title}
${badge}
${loading}
Deferred Modules