OU Portal
Log In
Welcome
Applicants
Z6_60GI02O0O8IDC0QEJUJ26TJDI4
Error:
Javascript is disabled in this browser. This page requires Javascript. Modify your browser's settings to allow Javascript to execute. See your browser's documentation for specific instructions.
{}
Close
Publikační činnost
Probíhá načítání, čekejte prosím...
publicationId :
tempRecordId :
actionDispatchIndex :
navigationBranch :
pageMode :
tabSelected :
isRivValid :
Record type:
stať ve sborníku (D)
Home Department:
Ústav pro výzkum a aplikace fuzzy modelování (94410)
Title:
First degree F-transform versus Takagi-Sugeno models
Citace
Perfiljeva, I. a Pavliska, V. First degree F-transform versus Takagi-Sugeno models. Liptovský Mikuláš: Printing House of the Armed Forces Academy of General M. R. Štefánik in Liptovský Mikuláš, 2010. Printing House of the Armed Forces Academy of General M. R. Štefánik in Liptovský Mikuláš, 2010. s. 103-104. ISBN 978-80-8040-391-1.
Subtitle
Publication year:
2010
Obor:
Obecná matematika
Number of pages:
2
Page from:
103
Page to:
104
Form of publication:
ISBN code:
978-80-8040-391-1
ISSN code:
Proceedings title:
Proceedings:
Mezinárodní
Publisher name:
Printing House of the Armed Forces Academy of General M. R. Štefánik in Liptovský Mikuláš
Place of publishing:
Liptovský Mikuláš
Country of Publication:
Sborník vydaný v zahraničí
Název konference:
Tenth International Conference on Fuzzy Set Theory and Applications
Conference venue:
Liptovský Ján
Datum zahájení konference:
Typ akce podle státní
příslušnosti účastníků:
Celostátní akce
WoS code:
EID:
Key words in English:
F-transform, fuzzy modeling, random set, fuzzy control
Annotation in original language:
F-transform is a modern and successful technique in fuzzy modeling. It maps an original universe of functions into a universe of their ``skeleton models'' (vectors of F-transform components) where further computations are easier. By this, it is as useful in applications (image compression, image fusion, data mining, time series procession, etc.) as traditional transforms. The empirical successes of F-transform suggest that this transformation can be provided with a natural probabilistic interpretation. Such an interpretation is presented in this paper. Specifically, we show that the probabilistic interpretation of fuzzy modeling by Sanchez et al. can be modified into a natural probabilistic explanation of F-transform formulas.
Annotation in english language:
References
Reference
R01:
Complementary Content
Deferred Modules
${title}
${badge}
${loading}
Deferred Modules