OU Portal
Log In
Welcome
Applicants
Z6_60GI02O0O8IDC0QEJUJ26TJDI4
Error:
Javascript is disabled in this browser. This page requires Javascript. Modify your browser's settings to allow Javascript to execute. See your browser's documentation for specific instructions.
{}
Close
Publikační činnost
Probíhá načítání, čekejte prosím...
publicationId :
tempRecordId :
actionDispatchIndex :
navigationBranch :
pageMode :
tabSelected :
isRivValid :
Record type:
stať ve sborníku (D)
Home Department:
Ústav pro výzkum a aplikace fuzzy modelování (94410)
Title:
Semilinear Spaces - Basic Structures for Fuzzy Systems
Citace
Perfilieva, I. Semilinear Spaces - Basic Structures for Fuzzy Systems.
In:
Proc. IPMU'2006.
Paris: Paris : Editions E.D.K., 2006. Paris : Editions E.D.K., 2006. s. 1580-1587. ISBN 2-84254-112-X.
Subtitle
Publication year:
2006
Obor:
Obecná matematika
Number of pages:
8
Page from:
1580
Page to:
1587
Form of publication:
ISBN code:
2-84254-112-X
ISSN code:
Proceedings title:
Proc. IPMU'2006
Proceedings:
Mezinárodní
Publisher name:
Paris : Editions E.D.K.
Place of publishing:
Paris
Country of Publication:
Sborník vydaný v zahraničí
Název konference:
IInformation Processing and Management of Uncertainty in Knowledge-based Systems
Conference venue:
Paris, France
Datum zahájení konference:
Typ akce podle státní
příslušnosti účastníků:
Celosvětová akce
WoS code:
EID:
Key words in English:
semi-linear space; semiring; BL-algebra; MV-algebra; linear dependence
Annotation in original language:
The notion of a linear space is generalized to the case where the underlying algebra is a commutative monoid and the set of scalars is a semiring reduct of a BL-algebra or an MV-algebra. The notions of linear dependence and independence are also introduced and necessary and sufficient conditions when vectors form a basis of a semi-linear space are given.
Annotation in english language:
The notion of a linear space is generalized to the case where the underlying algebra is a commutative monoid and the set of scalars is a semiring reduct of a BL-algebra or an MV-algebra. The notions of linear dependence and independence are also introduced and necessary and sufficient conditions when vectors form a basis of a semi-linear space are given.
References
Reference
R01:
RIV/61988987:17610/06:A1000HCM
Complementary Content
Deferred Modules
${title}
${badge}
${loading}
Deferred Modules