OU Portal
Log In
Welcome
Applicants
Z6_60GI02O0O8IDC0QEJUJ26TJDI4
Error:
Javascript is disabled in this browser. This page requires Javascript. Modify your browser's settings to allow Javascript to execute. See your browser's documentation for specific instructions.
{}
Close
Publikační činnost
Probíhá načítání, čekejte prosím...
publicationId :
tempRecordId :
actionDispatchIndex :
navigationBranch :
pageMode :
tabSelected :
isRivValid :
Record type:
stať ve sborníku (D)
Home Department:
Ústav pro výzkum a aplikace fuzzy modelování (94410)
Title:
Fuzzy Transform in a Discontinuity Case
Citace
Plšková, D. Fuzzy Transform in a Discontinuity Case.
In:
Proceedings IPMU 2006.
Paříž: Éditions E.D.K., 2006. Éditions E.D.K., 2006. s. 1876-1881. ISBN 2-84254-112-X.
Subtitle
Publication year:
2006
Obor:
Obecná matematika
Number of pages:
6
Page from:
1876
Page to:
1881
Form of publication:
ISBN code:
2-84254-112-X
ISSN code:
Proceedings title:
Proceedings IPMU 2006
Proceedings:
Publisher name:
Éditions E.D.K.
Place of publishing:
Paříž
Country of Publication:
Sborník vydaný v zahraničí
Název konference:
IPMU 2006 (Information Processing and Management of Uncertainty in Knowledge-based Systems)
Místo konání konference:
Paříž
Datum zahájení konference:
Typ akce podle státní
příslušnosti účastníků:
Evropská akce
WoS code:
EID:
Key words in English:
Fuzzy transform, Fuzzy Approximation, Convergence
Annotation in original language:
Fuzzy transform is a known technique that belongs into the area of fuzzy approximations. This method consists of the direct fuzzy transform and the inverse fuzzy transform. Untill now this method was used and analyzed only for the continuous functions. In this contribution we generalize this method for the case of discontinuous functions and we prove its convergent properties.
Annotation in english language:
Fuzzy transform is a known technique that belongs into the area of fuzzy approximations. This method consists of the direct fuzzy transform and the inverse fuzzy transform. Untill now this method was used and analyzed only for the continuous functions. In this contribution we generalize this method for the case of discontinuous functions and we prove its convergent properties.
References
Reference
R01:
RIV/61988987:17610/06:A1000GRH
Complementary Content
Deferred Modules
${title}
${badge}
${loading}
Deferred Modules