OU Portal
Log In
Welcome
Applicants
Z6_60GI02O0O8IDC0QEJUJ26TJDI4
Error:
Javascript is disabled in this browser. This page requires Javascript. Modify your browser's settings to allow Javascript to execute. See your browser's documentation for specific instructions.
{}
Close
Publikační činnost
Probíhá načítání, čekejte prosím...
publicationId :
tempRecordId :
actionDispatchIndex :
navigationBranch :
pageMode :
tabSelected :
isRivValid :
Record type:
stať ve sborníku (D)
Home Department:
Ústav pro výzkum a aplikace fuzzy modelování (94410)
Title:
An Investigation of Alternative Methods for the Inference of Probabilistic-Fuzzy Systems
Citace
Cao, T. H. N., Valášek, R., Holčapek, M., Madrid, N. M. a Nedela, D. An Investigation of Alternative Methods for the Inference of Probabilistic-Fuzzy Systems.
In:
22nd International Conference on Modeling Decisions for Artificial Intelligence: Modeling Decisions for Artificial Intelligence 2025-09-15 Valencia.
Cham: Springer, 2025. s. 104-116. ISBN 978-3-032-00890-9.
Subtitle
Publication year:
2025
Obor:
Number of pages:
13
Page from:
104
Page to:
116
Form of publication:
Elektronická verze
ISBN code:
978-3-032-00890-9
ISSN code:
0302-9743
Proceedings title:
Modeling Decisions for Artificial Intelligence
Proceedings:
Mezinárodní
Publisher name:
Springer
Place of publishing:
Cham
Country of Publication:
Sborník vydaný v zahraničí
Název konference:
22nd International Conference on Modeling Decisions for Artificial Intelligence
Conference venue:
Valencia
Datum zahájení konference:
Typ akce podle státní
příslušnosti účastníků:
Celosvětová akce
WoS code:
EID:
2-s2.0-105013618002
Key words in English:
Probabilistic-fuzzy, IF-THEN rules, Weighted quantiles, Inverse quantile, fuzzy transform, Quantile estimation, Quantile loss
Annotation in original language:
We focus on the inference process in a probabilistic-fuzzy IF-THEN rule system, where antecedents are modeled as fuzzy sets and consequents as weighted quantile functions, offering insights into the probability distribution of response data. While the weighted arithmetic mean has been the conventional inference method, other suitable approaches exist. This work compares it with three alternatives: the weighted geometric mean, weighted $L_1$ minimization, and a mixture distribution-based method. Through experiments on both simulated and real-world data, we evaluate their performance using standard statistical measures.
Annotation in english language:
We focus on the inference process in a probabilistic-fuzzy IF-THEN rule system, where antecedents are modeled as fuzzy sets and consequents as weighted quantile functions, offering insights into the probability distribution of response data. While the weighted arithmetic mean has been the conventional inference method, other suitable approaches exist. This work compares it with three alternatives: the weighted geometric mean, weighted $L_1$ minimization, and a mixture distribution-based method. Through experiments on both simulated and real-world data, we evaluate their performance using standard statistical measures.
References
Reference
R01:
Complementary Content
Deferred Modules
${title}
${badge}
${loading}
Deferred Modules