OU Portal
Log In
Welcome
Applicants
Z6_60GI02O0O8IDC0QEJUJ26TJDI4
Error:
Javascript is disabled in this browser. This page requires Javascript. Modify your browser's settings to allow Javascript to execute. See your browser's documentation for specific instructions.
{}
Close
Publikační činnost
Probíhá načítání, čekejte prosím...
publicationId :
tempRecordId :
actionDispatchIndex :
navigationBranch :
pageMode :
tabSelected :
isRivValid :
Record type:
stať ve sborníku (D)
Home Department:
Ústav pro výzkum a aplikace fuzzy modelování (94410)
Title:
Fractional Loss Functions in Neural Networks: A New Perspective on Learning Dynamic
Citace
Alijani, Z. a Molek, V. Fractional Loss Functions in Neural Networks: A New Perspective on Learning Dynamic.
In:
2025 IFSA World Congress NAFIPS Annual Meeting: TBA - will be published by Springer 2025-08-16 Banff.
Subtitle
Publication year:
2025
Obor:
Number of pages:
Page from:
Page to:
Form of publication:
ISBN code:
ISSN code:
Proceedings title:
TBA - will be published by Springer
Proceedings:
Publisher name:
Place of publishing:
Country of Publication:
Název konference:
2025 IFSA World Congress NAFIPS Annual Meeting
Místo konání konference:
Banff
Datum zahájení konference:
Typ akce podle státní
příslušnosti účastníků:
Celosvětová akce
WoS code:
EID:
Key words in English:
Fractional Calculus; Loss Function; Grünwald-Letnikov Derivative
Annotation in original language:
Annotation in english language:
This paper presents a new method of creating neural networkloss functions using the concepts of fractional calculus. By integratingnon-integer order derivatives, we transform conventional loss functionsinto fractional models, such as fractional Mean Squared Error, fractionalHuber loss, and fractional cross-entropy. We provide both theoreticalframeworks and empirical evidence across classification and regressionbenchmarks, emphasizing performance enhancements and practical considerations.
References
Reference
R01:
Complementary Content
Deferred Modules
${title}
${badge}
${loading}
Deferred Modules