OU Portal
Log In
Welcome
Applicants
Z6_60GI02O0O8IDC0QEJUJ26TJDI4
Error:
Javascript is disabled in this browser. This page requires Javascript. Modify your browser's settings to allow Javascript to execute. See your browser's documentation for specific instructions.
{}
Zavřít
Publikační činnost
Probíhá načítání, čekejte prosím...
publicationId :
tempRecordId :
actionDispatchIndex :
navigationBranch :
pageMode :
tabSelected :
isRivValid :
Typ záznamu:
stať ve sborníku (D)
Domácí pracoviště:
Katedra informatiky a počítačů (31400)
Název:
Comparison of basic recommendation methods for Czech news articles
Citace
Müller, P. a Walek, B. Comparison of basic recommendation methods for Czech news articles.
In:
2024 IEEE 17th International Scientific Conference on Informatics: 2024 IEEE 17th International Scientific Conference on Informatics 2024-11-13 Poprad.
Podnázev
Rok vydání:
2024
Obor:
Počet stran:
7
Strana od:
Strana do:
Forma vydání:
Kód ISBN:
Kód ISSN:
Název sborníku:
2024 IEEE 17th International Scientific Conference on Informatics
Sborník:
Mezinárodní
Název nakladatele:
Místo vydání:
Stát vydání:
Sborník vydaný v zahraničí
Název konference:
2024 IEEE 17th International Scientific Conference on Informatics
Místo konání konference:
Poprad
Datum zahájení konference:
Typ akce podle státní
příslušnosti účastníků akce:
Evropská akce
Kód UT WoS:
EID:
Klíčová slova anglicky:
recommender systems, expert systems, fuzzy logic,fuzzy recommender system, popularity recommender system
Popis v původním jazyce:
The common contemporary recommendationmethods were assessed for recommending relevant news articlesin the Czech language. We used a TF-IDF vectorization withcosine similarity for content-based recommendations andsingular value decomposition for collaborative filtering. Thesimplest model was the popularity model based on the votecounts of other users. While the best days of expert systems seemto be gone in the era of more sophisticated neural networkmodels, we also wanted to investigate whether expert systemscan still show some benefits in providing relatively simple andexplainable methods for an ensemble of recommendations. Wealso used a Bayesian-inspired approach for the hybrid methodensemble. This work aimed to test the fundamentalrecommendation techniques on smaller datasets with non-English language using three predictors: user interactions bylike button, click-throughs (and article text itself). Despite therecent popularity of the neural network models, we found thatsimple models outperformed the models with neural networkson our dataset.
Popis v anglickém jazyce:
The common contemporary recommendationmethods were assessed for recommending relevant news articlesin the Czech language. We used a TF-IDF vectorization withcosine similarity for content-based recommendations andsingular value decomposition for collaborative filtering. Thesimplest model was the popularity model based on the votecounts of other users. While the best days of expert systems seemto be gone in the era of more sophisticated neural networkmodels, we also wanted to investigate whether expert systemscan still show some benefits in providing relatively simple andexplainable methods for an ensemble of recommendations. Wealso used a Bayesian-inspired approach for the hybrid methodensemble. This work aimed to test the fundamentalrecommendation techniques on smaller datasets with non-English language using three predictors: user interactions bylike button, click-throughs (and article text itself). Despite therecent popularity of the neural network models, we found thatsimple models outperformed the models with neural networkson our dataset.
Seznam ohlasů
Ohlas
R01:
Complementary Content
Deferred Modules
${title}
${badge}
${loading}
Deferred Modules