OU Portal
Log In
Welcome
Applicants
Z6_60GI02O0O8IDC0QEJUJ26TJDI4
Error:
Javascript is disabled in this browser. This page requires Javascript. Modify your browser's settings to allow Javascript to execute. See your browser's documentation for specific instructions.
{}
Close
Publikační činnost
Probíhá načítání, čekejte prosím...
publicationId :
tempRecordId :
actionDispatchIndex :
navigationBranch :
pageMode :
tabSelected :
isRivValid :
Record type:
stať ve sborníku (D)
Home Department:
Ústav pro výzkum a aplikace fuzzy modelování (94410)
Title:
On Solvability Degree of Systems of Partial Fuzzy Relational Equations
Citace
Cao, T. H. N. a Valášek, R. On Solvability Degree of Systems of Partial Fuzzy Relational Equations.
In:
FUZZ-IEEE 2024: 2024 International Conference on Fuzzy Systems (FUZZ) 2024 Yokohama, Japan.
IEEE, 2024. ISBN 979-835031954-5.
Subtitle
Publication year:
2024
Obor:
Obecná matematika
Number of pages:
7
Page from:
neuvedeno
Page to:
neuvedeno
Form of publication:
Elektronická verze
ISBN code:
979-835031954-5
ISSN code:
1098-7584
Proceedings title:
2024 International Conference on Fuzzy Systems (FUZZ)
Proceedings:
Mezinárodní
Publisher name:
IEEE
Place of publishing:
neuvedeno
Country of Publication:
Název konference:
FUZZ-IEEE 2024
Místo konání konference:
Yokohama, Japan
Datum zahájení konference:
Typ akce podle státní
příslušnosti účastníků:
Celosvětová akce
WoS code:
EID:
2-s2.0-85201525477
Key words in English:
partial fuzzy relational equations implicative model, borderline casesalpha-liftsolvability degreeundefined valuespartial fuzzy set, theory partial algebras
Annotation in original language:
Systems of partial fuzzy relational equations employing undefined values in the antecedents and consequents have been approached recently. The primary focus was on the issues of sufficient solvability and solvability criteria. This study introduces another perspective, investigating the behavior of solvability degrees of these systems. We employ operations from the Lower estimation and Dragonfly partial algebras developed in the partial fuzzy set theory framework. Initially, we establish a degree of solvability in an appropriate space of approximations containing potential solutions for the systems. Subsequently, we introduce the concept of the alpha-lift for a given partial fuzzy set and provide its fundamental properties. This concept is employed to modify the antecedents and consequents of a given system of partial fuzzy relational equations, resulting in a modified system. The solvability degree of this modified system is then studied, and we demonstrate that, under sufficient conditions, it significantly enhances the solvability degree of the initial system. This positive impact is observed in the G\"{o}del algebra, the underlying algebraic structure of partial algebras. In conclusion, we provide illustrative examples that effectively demonstrate the theoretical results.
Annotation in english language:
References
Reference
R01:
RIV/61988987:17610/24:A2502NM4
Complementary Content
Deferred Modules
${title}
${badge}
${loading}
Deferred Modules