OU Portal
Log In
Welcome
Applicants
Z6_60GI02O0O8IDC0QEJUJ26TJDI4
Error:
Javascript is disabled in this browser. This page requires Javascript. Modify your browser's settings to allow Javascript to execute. See your browser's documentation for specific instructions.
{}
Close
Publikační činnost
Probíhá načítání, čekejte prosím...
publicationId :
tempRecordId :
actionDispatchIndex :
navigationBranch :
pageMode :
tabSelected :
isRivValid :
Record type:
stať ve sborníku (D)
Home Department:
Katedra informatiky a počítačů (31400)
Title:
Molecule Builder: Environment for Testing Reinforcement Learning Agents
Citace
Hyner, P., Hůla, J. a Janota, M. Molecule Builder: Environment for Testing Reinforcement Learning Agents.
In:
15th International Joint Conference on Computational Intelligence: Proceedings of the 15th International Joint Conference on Computational Intelligence 2023-11-13 Řím.
Italská republika: SCITEPRESS, 2023. s. 450-458. ISBN 978-989-758-674-3.
Subtitle
Publication year:
2023
Obor:
Informatika
Number of pages:
9
Page from:
450
Page to:
458
Form of publication:
Elektronická verze
ISBN code:
978-989-758-674-3
ISSN code:
2184-3236
Proceedings title:
Proceedings of the 15th International Joint Conference on Computational Intelligence
Proceedings:
Mezinárodní
Publisher name:
SCITEPRESS
Place of publishing:
Italská republika
Country of Publication:
Sborník vydaný v zahraničí
Název konference:
15th International Joint Conference on Computational Intelligence
Conference venue:
Řím
Datum zahájení konference:
Typ akce podle státní
příslušnosti účastníků:
Celosvětová akce
WoS code:
EID:
Key words in English:
Reinforcement Learning, Subgoals, Environment, Agent
Annotation in original language:
We present a reinforcement learning environment designed to test agents’ ability to solve problems that can be naturally decomposed using subgoals. This environment is built on top of the PyVGDL game engine and enables to generate problem instances by specifying the dependency structure of subgoals. Its purpose is to enable faster development of Reinforcement Learning algorithms that solve problems by proposing subgoals and then reaching these subgoals.
Annotation in english language:
References
Reference
R01:
RIV/61988987:17310/23:A2402M39
Complementary Content
Deferred Modules
${title}
${badge}
${loading}
Deferred Modules