OU Portal
Log In
Welcome
Applicants
Z6_60GI02O0O8IDC0QEJUJ26TJDI4
Error:
Javascript is disabled in this browser. This page requires Javascript. Modify your browser's settings to allow Javascript to execute. See your browser's documentation for specific instructions.
{}
Close
Publikační činnost
Probíhá načítání, čekejte prosím...
publicationId :
tempRecordId :
actionDispatchIndex :
navigationBranch :
pageMode :
tabSelected :
isRivValid :
Record type:
stať ve sborníku (D)
Home Department:
Ústav pro výzkum a aplikace fuzzy modelování (94410)
Title:
Replacing goniophotometer with camera and U-Net with Hypercolumn rescale block
Citace
Vajgl, M. a Hurtík, P. Replacing goniophotometer with camera and U-Net with Hypercolumn rescale block.
In:
IWANN 2023 / 17th International Work-Conference on Artifical Neural Networks: Lecture Notes in Computer Science 2023-06-18 Ponta Delgada.
Cham: Springer, 2023. s. 423-434. ISBN 978-303143077-0.
Subtitle
Publication year:
2023
Obor:
Number of pages:
12
Page from:
423
Page to:
434
Form of publication:
Tištená verze
ISBN code:
978-303143077-0
ISSN code:
Proceedings title:
Lecture Notes in Computer Science
Proceedings:
Mezinárodní
Publisher name:
Springer
Place of publishing:
Cham
Country of Publication:
Sborník vydaný v zahraničí
Název konference:
IWANN 2023 / 17th International Work-Conference on Artifical Neural Networks
Conference venue:
Ponta Delgada
Datum zahájení konference:
Typ akce podle státní
příslušnosti účastníků:
Celosvětová akce
WoS code:
001155317100035
EID:
2-s2.0-85174508991
Key words in English:
Goniophotometer; U-Net; Asymmetric segmentation; Car headlamp
Annotation in original language:
We deal with replacing a costly and slow goniophotometer device with a standard, inexpensive, and fast camera in the task of evaluating an illuminated area by a car headlamp. This solution is novel, has not yet been solved, and has the potential to speed up the process of prototyping headlamps. The difficulties lie in the significantly different resolutions of the two devices and in the disparity between intensities captured by the camera and goniophotometer due to the nonlinear behavior of the light. We propose to capture images by a camera with various exposure times and handle them as a multispectral image. The image is processed by U-Net architecture where we replaced the standard decoder with a Hypercolumn rescale block. The proposed scheme produces a mean absolute percentage difference between the real goniophotometer and our solution of less than 0.5\%.
Annotation in english language:
References
Reference
R01:
RIV/61988987:17610/23:A2402KW0
Complementary Content
Deferred Modules
${title}
${badge}
${loading}
Deferred Modules