OU Portal
Log In
Welcome
Applicants
Z6_60GI02O0O8IDC0QEJUJ26TJDI4
Error:
Javascript is disabled in this browser. This page requires Javascript. Modify your browser's settings to allow Javascript to execute. See your browser's documentation for specific instructions.
{}
Zavřít
Publikační činnost
Probíhá načítání, čekejte prosím...
publicationId :
tempRecordId :
actionDispatchIndex :
navigationBranch :
pageMode :
tabSelected :
isRivValid :
Typ záznamu:
stať ve sborníku (D)
Domácí pracoviště:
Katedra matematiky (31100)
Název:
A combination of Fuzzy techniques and Chow test to detect structural breaks in time series
Citace
TRUONG, T. T. P. a Novák, V. A combination of Fuzzy techniques and Chow test to detect structural breaks in time series.
In:
ITISE 2022: Proceedings of Abstracts ITISE 2022 2022-06-27 Gran Canaria.
Gran Canaria, Spain: Godel Impresiones Digitales S.L, 2022. s. 1-1. ISBN 978-84-19214-24-9.
Podnázev
Rok vydání:
2022
Obor:
Obecná matematika
Počet stran:
1
Strana od:
1
Strana do:
1
Forma vydání:
Tištená verze
Kód ISBN:
978-84-19214-24-9
Kód ISSN:
Název sborníku:
Proceedings of Abstracts ITISE 2022
Sborník:
Mezinárodní
Název nakladatele:
Godel Impresiones Digitales S.L
Místo vydání:
Gran Canaria, Spain
Stát vydání:
Sborník vydaný v zahraničí
Název konference:
ITISE 2022
Místo konání konference:
Gran Canaria
Datum zahájení konference:
Typ akce podle státní
příslušnosti účastníků akce:
Evropská akce
Kód UT WoS:
EID:
Klíčová slova anglicky:
Time series Chow test Fuzzy transform Evaluative linguistic expressions Fuzzy natural logic
Popis v původním jazyce:
A new methodology for the detection of structural breaks in time series is introduced. The proposed method is based on the combination of special techniques of fuzzy modeling, namely Fuzzy Transform (F-transform) and selected methods of Fuzzy Natural Logic (FNL), and the Chow test that is the well-known statistical method for anomaly detection in time series. The concept of detection structural breaks in time series using the Chow test is based on the difference of intercept terms as well as different regression coefficients. The time series in which a structural break occurs is divided into two linear regressions models. The test of hypothesis related to the test of structural break is conducted by testing the null hypothesis. However, it is difficult to determine the changepoint in a given time series. Therefore, we apply fuzzy techniques for this purpose. Under the assumption that a time series can be additively decomposed into trend-cycle, seasonal component, and random disturbances, the fuzzy transform makes it possible to find the arbitrary shapes of the trend-cycle, and detect specific areas, or intervals of monotonous behavior. We can also estimate the slope (average value of the first derivative) of the time series in a given (imprecisely determined) area. FNL provides a mathematical model of semantics of special expressions of natural language (the so-called evaluative linguistic expressions). Using them we are able to evaluate the slope of time series or detect areas of monotonous behavior. Using this information, we are able to detect possible structural breaks. The fuzzy transform used in time series provides zero degree (absolute components) and first degree ones. The coefficients are estimations of average values of the tangents (slopes) of the function over areas characterized by the fuzzy sets.
Popis v anglickém jazyce:
Seznam ohlasů
Ohlas
R01:
Complementary Content
Deferred Modules
${title}
${badge}
${loading}
Deferred Modules