OU Portal
Log In
Welcome
Applicants
Z6_60GI02O0O8IDC0QEJUJ26TJDI4
Error:
Javascript is disabled in this browser. This page requires Javascript. Modify your browser's settings to allow Javascript to execute. See your browser's documentation for specific instructions.
{}
Close
Publikační činnost
Probíhá načítání, čekejte prosím...
publicationId :
tempRecordId :
actionDispatchIndex :
navigationBranch :
pageMode :
tabSelected :
isRivValid :
Record type:
stať ve sborníku (D)
Home Department:
Ústav pro výzkum a aplikace fuzzy modelování (94410)
Title:
A Novel Approach to Weighted Fuzzy Rules for Positive Samples
Citace
Daňková, M. A Novel Approach to Weighted Fuzzy Rules for Positive Samples.
In:
IJCCI2022: Proceedings of the 14th International Joint Conference on Computational Intelligence 2022 Valletta.
SCITEPRESS - Science and Technology Publications, 2022. s. 209-216. ISBN 978-989-758-611-8.
Subtitle
Publication year:
2022
Obor:
Obecná matematika
Number of pages:
8
Page from:
209
Page to:
216
Form of publication:
Elektronická verze
ISBN code:
978-989-758-611-8
ISSN code:
Proceedings title:
Proceedings of the 14th International Joint Conference on Computational Intelligence
Proceedings:
Mezinárodní
Publisher name:
SCITEPRESS - Science and Technology Publications
Place of publishing:
Neuveden
Country of Publication:
Sborník vydaný v zahraničí
Název konference:
IJCCI2022
Místo konání konference:
Valletta
Datum zahájení konference:
Typ akce podle státní
příslušnosti účastníků:
Celosvětová akce
WoS code:
EID:
2-s2.0-85146199063
Key words in English:
Fuzzy Relation, Relational Model, Fuzzy Approximation, Implicative Model, Fuzzy IF-THEN Rules
Annotation in original language:
In this contribution, we propose a novel approach to automated fuzzy rule base generation based on underlying observational data. The core of this method lies in adding information to a particular fuzzy rule in the form of attached weight given as a value extracted from a relational data model. In particular, we blend two approaches to receive particular models that overcome their specific drawbacks.
Annotation in english language:
References
Reference
R01:
RIV/61988987:17610/22:A2302I04
Complementary Content
Deferred Modules
${title}
${badge}
${loading}
Deferred Modules