OU Portal
Log In
Welcome
Applicants
Z6_60GI02O0O8IDC0QEJUJ26TJDI4
Error:
Javascript is disabled in this browser. This page requires Javascript. Modify your browser's settings to allow Javascript to execute. See your browser's documentation for specific instructions.
{}
Close
Publikační činnost
Probíhá načítání, čekejte prosím...
publicationId :
tempRecordId :
actionDispatchIndex :
navigationBranch :
pageMode :
tabSelected :
isRivValid :
Record type:
stať ve sborníku (D)
Home Department:
Ústav pro výzkum a aplikace fuzzy modelování (94410)
Title:
Fast Heuristic for Ricochet Robots
Citace
Hůla, J., Adamczyk, D. a Janota, M. Fast Heuristic for Ricochet Robots.
In:
Proceedings of the 15th International Conference on Agents and Artificial Intelligence 2023 Lisabon.
Lisabon: ICAART, 2023. s. 71-79. ISBN 978-989-758-623-1.
Subtitle
Publication year:
2023
Obor:
Number of pages:
10
Page from:
71
Page to:
79
Form of publication:
Elektronická verze
ISBN code:
978-989-758-623-1
ISSN code:
Proceedings title:
Proceedings of the 15th International Conference on Agents and Artificial Intelligence
Proceedings:
Publisher name:
ICAART
Place of publishing:
Lisabon
Country of Publication:
Sborník vydaný v zahraničí
Název konference:
Conference venue:
Lisabon
Datum zahájení konference:
Typ akce podle státní
příslušnosti účastníků:
Celosvětová akce
WoS code:
EID:
Key words in English:
Multi-Agent Pathfinding, Heuristic Algorithms, Ricochet Robots, Subgoals
Annotation in original language:
In this contribution, we describe a fast heuristic for a logical game called Ricochet Robots in which multiple robots cooperate in order to reach a goal. The heuristic recursively explores a restricted search space using subgoals that correspond to interactions of two robots. Subgoals are expanded according to an estimated length of a complete solution, which makes the algorithm reminiscent of the A* algorithm. The estimated length is a lower bound of the length of the real solution, and this allows us to prune subgoals using the best solution found thus far. After eliminating all remaining subgoals, we are guaranteed that the best solution found is the shortest solution from the restricted search space. Moreover, we show that the restricted search space contains a large portion of optimal solutions of the empirical distribution of 1 million random problems. We believe that the presented ideas should generalize to other search problems in which multiple independent agents could block or help each other.
Annotation in english language:
References
Reference
R01:
RIV/61988987:17610/23:A2402HUP
Complementary Content
Deferred Modules
${title}
${badge}
${loading}
Deferred Modules