OU Portal
Log In
Welcome
Applicants
Z6_60GI02O0O8IDC0QEJUJ26TJDI4
Error:
Javascript is disabled in this browser. This page requires Javascript. Modify your browser's settings to allow Javascript to execute. See your browser's documentation for specific instructions.
{}
Zavřít
Publikační činnost
Probíhá načítání, čekejte prosím...
publicationId :
tempRecordId :
actionDispatchIndex :
navigationBranch :
pageMode :
tabSelected :
isRivValid :
Typ záznamu:
stať ve sborníku (D)
Domácí pracoviště:
Ústav pro výzkum a aplikace fuzzy modelování (94410)
Název:
Image Classifier with Dynamic Set of Known Classes
Citace
Hůla, J. a Mojžíšek, D. Image Classifier with Dynamic Set of Known Classes.
In:
Proceedings of the 22nd Conference Information Technologies - Applications and Theory (ITAT 2022) 2022-09-23 Zuberec, Slovakia.
CEUR-WS, 2022. s. 68-74. ISSN 1613-0073.
Podnázev
Rok vydání:
2022
Obor:
Počet stran:
7
Strana od:
68
Strana do:
74
Forma vydání:
Elektronická verze
Kód ISBN:
neuvedeno
Kód ISSN:
1613-0073
Název sborníku:
Proceedings of the 22nd Conference Information Technologies - Applications and Theory (ITAT 2022)
Sborník:
Mezinárodní
Název nakladatele:
CEUR-WS
Místo vydání:
neuvedeno
Stát vydání:
Sborník vydaný v zahraničí
Název konference:
Místo konání konference:
Zuberec, Slovakia
Datum zahájení konference:
Typ akce podle státní
příslušnosti účastníků akce:
Evropská akce
Kód UT WoS:
EID:
2-s2.0-85139878079
Klíčová slova anglicky:
image classification, metric learning, unseen class detection, open-world classification
Popis v původním jazyce:
The typical classification task is based on the assumption that the model will later only encounter examples of classes available during its training. In practice, this is often not a realistic assumption, because of limitations in obtaining enough labeled training data. This contribution is focused on the case where the model might encounter a sample belonging to a class different from the classes seen in the training phase. The goal is to reject examples of unseen classes with the option of later adding them as representatives of new classes without the need to retrain the backbone model. This is important because the end-user might not be able to re-train the model for any reason. The presented approach is based on metric learning combined with the meta-classifier similar to the approach of Xu et al. [1]. Classified examples are first embedded in a vector space through an encoder trained to capture similarities in the input data. The classification itself is then performed by 𝑛, where 𝑛 is the number of known classes, binary decisions. For each decision, the tested example is compared to the 𝑘 closest examples from the given class. If the model does not decide that the example belongs to any class, this example is rejected as possibly unknown. The method is tested in a visual data classification task.
Popis v anglickém jazyce:
Seznam ohlasů
Ohlas
R01:
RIV/61988987:17610/22:A2302GEE
Complementary Content
Deferred Modules
${title}
${badge}
${loading}
Deferred Modules