OU Portal
Log In
Welcome
Applicants
Z6_60GI02O0O8IDC0QEJUJ26TJDI4
Error:
Javascript is disabled in this browser. This page requires Javascript. Modify your browser's settings to allow Javascript to execute. See your browser's documentation for specific instructions.
{}
Zavřít
Publikační činnost
Probíhá načítání, čekejte prosím...
publicationId :
tempRecordId :
actionDispatchIndex :
navigationBranch :
pageMode :
tabSelected :
isRivValid :
Typ záznamu:
stať ve sborníku (D)
Domácí pracoviště:
Ústav pro výzkum a aplikace fuzzy modelování (94410)
Název:
Composition Models of Fuzzy Relations Considering Importance Levels of Features
Citace
Cao, T. H. N., Valášek, R. a Ožana, S. Composition Models of Fuzzy Relations Considering Importance Levels of Features.
In:
IEEE International Conference on Knowledge and System Engineering: The 2022 14th International Conference on Knowledge and Systems Engineering (KSE) 2022 Nha Trang.
Nha Trang: IEEE, 2022. s. 1-6. ISBN 978-1-6654-5281-6.
Podnázev
Rok vydání:
2022
Obor:
Obecná matematika
Počet stran:
6
Strana od:
1
Strana do:
6
Forma vydání:
Elektronická verze
Kód ISBN:
978-1-6654-5281-6
Kód ISSN:
2164-2508
Název sborníku:
The 2022 14th International Conference on Knowledge and Systems Engineering (KSE)
Sborník:
Mezinárodní
Název nakladatele:
IEEE
Místo vydání:
Nha Trang
Stát vydání:
Sborník vydaný v zahraničí
Název konference:
IEEE International Conference on Knowledge and System Engineering
Místo konání konference:
Nha Trang
Datum zahájení konference:
Typ akce podle státní
příslušnosti účastníků akce:
Celosvětová akce
Kód UT WoS:
EID:
Klíčová slova anglicky:
fuzzy relational composition; Bandler-Kohout product; importance levels; excluding features; typical features; unavoidable features; fuzzy quantifiers; classification; Dragonfly
Popis v původním jazyce:
Several fuzzy concepts are involved in relational databases such as the degree of fulfilment of a graded property, the level of importance (or of possibility) of a component in a query, grouping features, or the concept of fuzzy quantifiers. We have recently approached the concepts of excluding features and unavoidable features to construct the extensions of fuzzy relational compositions. The extended compositions include the employment of fuzzy quantifiers as well. In this work, we approach the concept of importance levels of considered features in a particular sense that is intuitively suitable to the classification tasks. Then we propose a direction of incorporating this concept into the existing fuzzy relational compositions. We provide various useful properties related to the new models of the compositions. Furthermore, a simple example of the classification of animals in biology is addressed for the behaviour illustration of the proposed models. Finally, we examine the applicability of the new models to the practical application of the Dragonfly classification, which has been considered previously.
Popis v anglickém jazyce:
Seznam ohlasů
Ohlas
R01:
RIV/61988987:17610/22:A2302G9D
Complementary Content
Deferred Modules
${title}
${badge}
${loading}
Deferred Modules