OU Portal
Log In
Welcome
Applicants
Z6_60GI02O0O8IDC0QEJUJ26TJDI4
Error:
Javascript is disabled in this browser. This page requires Javascript. Modify your browser's settings to allow Javascript to execute. See your browser's documentation for specific instructions.
{}
Zavřít
Publikační činnost
Probíhá načítání, čekejte prosím...
publicationId :
tempRecordId :
actionDispatchIndex :
navigationBranch :
pageMode :
tabSelected :
isRivValid :
Typ záznamu:
stať ve sborníku (D)
Domácí pracoviště:
Ústav pro výzkum a aplikace fuzzy modelování (94410)
Název:
Selection of Keypoints in 2D Images Using F-Transform
Citace
Perfiljeva, I. a Adamczyk, D. Selection of Keypoints in 2D Images Using F-Transform.
In:
IPMU 2022: Information Processing and Management of Uncertainty in Knowledge-Based Systems 2022-07-11 Milano.
Springer, 2022. s. 418-430. ISBN 978-3-031-08974-9.
Podnázev
Rok vydání:
2022
Obor:
Obecná matematika
Počet stran:
13
Strana od:
418
Strana do:
430
Forma vydání:
Elektronická verze
Kód ISBN:
978-3-031-08974-9
Kód ISSN:
Název sborníku:
Information Processing and Management of Uncertainty in Knowledge-Based Systems
Sborník:
Název nakladatele:
Springer
Místo vydání:
neuvedeno
Stát vydání:
Název konference:
IPMU 2022
Místo konání konference:
Milano
Datum zahájení konference:
Typ akce podle státní
příslušnosti účastníků akce:
Celosvětová akce
Kód UT WoS:
EID:
2-s2.0-85135068685
Klíčová slova anglicky:
2D images; F-transform; Fast algorithms; Graph laplacians; Image regularization; Keypoints; Laplacian operator; Local extremum; Regularisation; Robust algorithm
Popis v původním jazyce:
We focus on a new fast and robust algorithm for selecting keypoints in 2D images using the following techniques: image regularization, selection of spaces with closeness, and design of the corresponding graph Laplacians. Then, the representative keypoints are local extrema in the image after the Laplacian operator is applied. The convolution kernels, used for regularization, are extracted from the uniform partition of the image domain, and the graph Laplacian is constructed using the theory of F0-transforms. Empirically, we show that sequences of F-transform kernels that correspond to different regularization levels share the property that they do not introduce new local extrema into the image under convolution. This justifies the computation of keypoints as points where local extrema are reached and allows them to be classified according to the values of the local extrema. We show that the extracted key points are representative in the sense that they allow a good approximate reconstruction of the original image from the calculated components of the F-transform taken from different convolutions. In addition, we show that the proposed algorithm is resistant to Gaussian noise.
Popis v anglickém jazyce:
Seznam ohlasů
Ohlas
R01:
RIV/61988987:17610/22:A2302G4A
Complementary Content
Deferred Modules
${title}
${badge}
${loading}
Deferred Modules