OU Portal
Log In
Welcome
Applicants
Z6_60GI02O0O8IDC0QEJUJ26TJDI4
Error:
Javascript is disabled in this browser. This page requires Javascript. Modify your browser's settings to allow Javascript to execute. See your browser's documentation for specific instructions.
{}
Zavřít
Publikační činnost
Probíhá načítání, čekejte prosím...
publicationId :
tempRecordId :
actionDispatchIndex :
navigationBranch :
pageMode :
tabSelected :
isRivValid :
Typ záznamu:
stať ve sborníku (D)
Domácí pracoviště:
Katedra matematiky (31100)
Název:
Laplace Operator in Connection to Underlying Space Structure
Citace
Zámečníková, H. a Perfiljeva, I. Laplace Operator in Connection to Underlying Space Structure.
In:
IPMU 2022: Information Processing and Management of Uncertainty in Knowledge-Based Systems 2022-07-11 Milano.
Milano: Springer, 2022. s. 394-404. ISBN 978-3-031-08973-2.
Podnázev
Rok vydání:
2022
Obor:
Obecná matematika
Počet stran:
11
Strana od:
394
Strana do:
404
Forma vydání:
Tištená verze
Kód ISBN:
978-3-031-08973-2
Kód ISSN:
Název sborníku:
Information Processing and Management of Uncertainty in Knowledge-Based Systems
Sborník:
Mezinárodní
Název nakladatele:
Springer
Místo vydání:
Milano
Stát vydání:
Sborník vydaný v zahraničí
Název konference:
IPMU 2022
Místo konání konference:
Milano
Datum zahájení konference:
Typ akce podle státní
příslušnosti účastníků akce:
Celosvětová akce
Kód UT WoS:
EID:
Klíčová slova anglicky:
Laplace operator, Proximity, Fuzzy transform
Popis v původním jazyce:
Laplace operator is a diverse concept throughout natural sciences. It appears in many research areas and every such area defines it accordingly based on underlying domain and plans on follow-up applications. This operator attracts a lot of attention e.g. in signal and image processing applications. However, signals, in general, can be defined not only on Euclidean domains such as regular grids (in case of images). There are cases when underlying space is considered to be e.g. a non-regular graph or even a manifold, but the Laplace operator is still closely bound to the space structure. Therefore, we investigated this operator from point of view of spaces, where distance may not be explicitly defined and thus is being replaced by more general, so-called, proximity. Our goal was to find such a representation, that would be simple for computations but at the same time applicable to more general domains, possibly to spaces without a notion of a classic distance. In this article, we will mention some of the various ways in which this operator can be introduced in relation to the corresponding space. Also, we will introduce the formula for the Laplace operator in the space whose structure is determined by a fuzzy partition. And we will investigate the properties of this kind of representation in parallelisms to standard well-known versions.
Popis v anglickém jazyce:
Seznam ohlasů
Ohlas
R01:
RIV/61988987:17310/22:A2302FWX
Complementary Content
Deferred Modules
${title}
${badge}
${loading}
Deferred Modules