OU Portal
Log In
Welcome
Applicants
Z6_60GI02O0O8IDC0QEJUJ26TJDI4
Error:
Javascript is disabled in this browser. This page requires Javascript. Modify your browser's settings to allow Javascript to execute. See your browser's documentation for specific instructions.
{}
Zavřít
Publikační činnost
Probíhá načítání, čekejte prosím...
publicationId :
tempRecordId :
actionDispatchIndex :
navigationBranch :
pageMode :
tabSelected :
isRivValid :
Typ záznamu:
stať ve sborníku (D)
Domácí pracoviště:
Ústav pro výzkum a aplikace fuzzy modelování (94410)
Název:
Fuzzy Natural Logic for Sentiment Analysis: A Proposal
Citace
Torrens Urrutia, A., Jiménez-López, M. D. a Novák, V. Fuzzy Natural Logic for Sentiment Analysis: A Proposal.
In:
Distributed Computing and Artificial Intelligence: Fuzzy Natural Logic for Sentiment Analysis: A Proposal 2021-10-06 Salamanca.
Springer, Cham, 2021. s. 64-73. ISBN 978-3-030-86887-1.
Podnázev
Rok vydání:
2021
Obor:
Informatika
Počet stran:
10
Strana od:
64
Strana do:
73
Forma vydání:
Elektronická verze
Kód ISBN:
978-3-030-86887-1
Kód ISSN:
2367-3370
Název sborníku:
Fuzzy Natural Logic for Sentiment Analysis: A Proposal
Sborník:
Mezinárodní
Název nakladatele:
Springer, Cham
Místo vydání:
Neuveden
Stát vydání:
Sborník vydaný v zahraničí
Název konference:
Distributed Computing and Artificial Intelligence
Místo konání konference:
Salamanca
Datum zahájení konference:
Typ akce podle státní
příslušnosti účastníků akce:
Celosvětová akce
Kód UT WoS:
EID:
2-s2.0-85115415376
Klíčová slova anglicky:
Sentiment classification, Opinion mining, Product Review
Popis v původním jazyce:
Fuzzy Natural Logic (FNL) is introduced as a model that could be useful in the area of sentiment analysis. FNL is a formal theory of human reasoning that includes mathematical models of the semantics of natural language expressions with regard to the vagueness phenomenon. The most elaborated constituent of FNL is the theory of evaluative linguistic expressions. To capture their semantics, it uses a single scale for computing extension of any evaluative expression that might be relevant for sentiment analysis. Therefore, it provides a more fine-grained classification of opinion and sentiments than dichotomous models which only distinguish between ‘positive’ and ‘negative’ values. © 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG.
Popis v anglickém jazyce:
Seznam ohlasů
Ohlas
R01:
RIV/61988987:17610/21:A2202C4D
Complementary Content
Deferred Modules
${title}
${badge}
${loading}
Deferred Modules