OU Portal
Log In
Welcome
Applicants
Z6_60GI02O0O8IDC0QEJUJ26TJDI4
Error:
Javascript is disabled in this browser. This page requires Javascript. Modify your browser's settings to allow Javascript to execute. See your browser's documentation for specific instructions.
{}
Close
Publikační činnost
Probíhá načítání, čekejte prosím...
publicationId :
tempRecordId :
actionDispatchIndex :
navigationBranch :
pageMode :
tabSelected :
isRivValid :
Record type:
stať ve sborníku (D)
Home Department:
Ústav pro výzkum a aplikace fuzzy modelování (94410)
Title:
An improved Forecasting and Detection of Structural Breaks in Time series using Fuzzy Techniques
Citace
Novák, V. a TRUONG, T. T. P. An improved Forecasting and Detection of Structural Breaks in Time series using Fuzzy Techniques.
In:
ITISE 2021: Contribution to Statistics 2021-07-19 Gran Canaria.
Berlin: Springer, 2022.
Subtitle
Publication year:
2022
Obor:
Obecná matematika
Number of pages:
14
Page from:
Page to:
Form of publication:
ISBN code:
ISSN code:
Proceedings title:
Contribution to Statistics
Proceedings:
Mezinárodní
Publisher name:
Springer
Place of publishing:
Berlin
Country of Publication:
Sborník vydaný v zahraničí
Název konference:
ITISE 2021
Místo konání konference:
Gran Canaria
Datum zahájení konference:
Typ akce podle státní
příslušnosti účastníků:
Celosvětová akce
WoS code:
EID:
Key words in English:
Time series; ARIMA; Fuzzy transform; Evaluative linguistic expressions; Fuzzy natural logic
Annotation in original language:
In this paper, we address non-statistical methods for forecasting and detection of structural breaks in time series. Our methods are based on the application of the unique fuzzy modeling method called fuzzy transform (F-transform) and selected methods of Fuzzy Natural Logic (FNL). The latter provides a formal model of the semantics of a part of natural language and methods for reasoning based on it. Using F-transform, we first estimate the trend-cycle. Then, using methods of FNL, we extract a sort of expert information that enables us to forecast the trend-cycle. Since F-transform also makes it possible to estimate the slope of time series over an imprecisely specified area (ignoring its volatility), we identify structural breaks through evaluation of changes in the slope by a suitable evaluative linguistic expression. We will demonstrate the effectiveness of our methods on several real time series and compare our results of forecasting with the classical ARIMA statistical method. Our methods are computationally very effective.
Annotation in english language:
References
Reference
R01:
Complementary Content
Deferred Modules
${title}
${badge}
${loading}
Deferred Modules