OU Portal
Log In
Welcome
Applicants
Z6_60GI02O0O8IDC0QEJUJ26TJDI4
Error:
Javascript is disabled in this browser. This page requires Javascript. Modify your browser's settings to allow Javascript to execute. See your browser's documentation for specific instructions.
{}
Zavřít
Publikační činnost
Probíhá načítání, čekejte prosím...
publicationId :
tempRecordId :
actionDispatchIndex :
navigationBranch :
pageMode :
tabSelected :
isRivValid :
Typ záznamu:
stať ve sborníku (D)
Domácí pracoviště:
Katedra informatiky a počítačů (31400)
Název:
Harris Hawks Optimisation: Using of an Archive
Citace
Bujok, P. Harris Hawks Optimisation: Using of an Archive.
In:
20th International Conference on Artificial Intelligence and Soft Computing (ICAISC 2020): Lecture Notes in Artificial Intelligence 12854 2021-06-20 Zakopane, Polsko.
Cham, Switzerland: Springer, 2021. s. 415-423. ISBN 978-303087985-3.
Podnázev
Rok vydání:
2021
Obor:
Informatika
Počet stran:
9
Strana od:
415
Strana do:
423
Forma vydání:
Elektronická verze
Kód ISBN:
978-303087985-3
Kód ISSN:
0302-9743
Název sborníku:
Lecture Notes in Artificial Intelligence 12854
Sborník:
Mezinárodní
Název nakladatele:
Springer
Místo vydání:
Cham, Switzerland
Stát vydání:
Sborník vydaný v zahraničí
Název konference:
20th International Conference on Artificial Intelligence and Soft Computing (ICAISC 2020)
Místo konání konference:
Zakopane, Polsko
Datum zahájení konference:
Typ akce podle státní
příslušnosti účastníků akce:
Celosvětová akce
Kód UT WoS:
EID:
2-s2.0-85117512842
Klíčová slova anglicky:
Swarm algorithm, Harris hawks optimisation, real-worldproblems, archive, experimental comparison.
Popis v původním jazyce:
This paper proposes an enhanced variant of the novel and popular Harris Hawks Optimisation (HHO) method. The original HHO algorithm was studied in many research projects, and a lot of hybrid (cooperative) variants of HHO was proposed. In this research study, an advanced HHO algorithm with an archive of the old solutions is proposed (HHOA). The proposed method is experimentally compared with the original HHO algorithm on a set of 22 real-world problems (CEC 2011). The results illustrate the superiority of HHOA because it outperforms HHO significantly in 20 out of 22 problems, and it is never significantly worse. Four well-known nature-based algorithms were employed to compare the efficiency of the proposed algorithm. HHOA achieves the best results in overall statistical comparison. A more detailed comparison shows that HHOA achieves the best results in half real-world problems, and it is never the worst-performing method. A newly employed archive of old solutions significantly increases the performance of the original HHO algorithm.
Popis v anglickém jazyce:
Seznam ohlasů
Ohlas
R01:
RIV/61988987:17310/21:A2202A0W
Complementary Content
Deferred Modules
${title}
${badge}
${loading}
Deferred Modules