OU Portal
Log In
Welcome
Applicants
Z6_60GI02O0O8IDC0QEJUJ26TJDI4
Error:
Javascript is disabled in this browser. This page requires Javascript. Modify your browser's settings to allow Javascript to execute. See your browser's documentation for specific instructions.
{}
Close
Publikační činnost
Probíhá načítání, čekejte prosím...
publicationId :
tempRecordId :
actionDispatchIndex :
navigationBranch :
pageMode :
tabSelected :
isRivValid :
Record type:
stať ve sborníku (D)
Home Department:
Katedra informatiky a počítačů (31400)
Title:
Differential Evolution with Distance-based Mutation-selection Applied to CEC 2021 Single Objective Numerical Optimisation
Citace
Bujok, P. a Kolenovský, P. Differential Evolution with Distance-based Mutation-selection Applied to CEC 2021 Single Objective Numerical Optimisation.
In:
2021 IEEE Congress on Evolutionary Computation: 2021 IEEE Congress on Evolutionary Computation (CEC) 2021-06-28 Krakow, Poland.
Piscataway, NJ, USA: IEEE, 2021. s. 453-460. ISBN 978-1-7281-8393-0.
Subtitle
Publication year:
2021
Obor:
Informatika
Number of pages:
8
Page from:
453
Page to:
460
Form of publication:
Elektronická verze
ISBN code:
978-1-7281-8393-0
ISSN code:
Proceedings title:
2021 IEEE Congress on Evolutionary Computation (CEC)
Proceedings:
Mezinárodní
Publisher name:
IEEE
Place of publishing:
Piscataway, NJ, USA
Country of Publication:
Sborník vydaný v zahraničí
Název konference:
2021 IEEE Congress on Evolutionary Computation
Conference venue:
Krakow, Poland
Datum zahájení konference:
Typ akce podle státní
příslušnosti účastníků:
Celosvětová akce
WoS code:
EID:
Key words in English:
Differential evolution, mutation, Euclidean distance,population size, archive, benchmark set, optimisation,experimental comparison
Annotation in original language:
A Differential Evolution (DE) algorithm with distance-based mutation-selection, population size reduction, and an optional external archive (DEDMNA) is proposed and tested on the CEC 2021 benchmark suite. The three well-known mutation variants are chosen in combination with one crossover for this model. The distances of three newly generated positions are computed to select the most proper position to evaluate. In the proposed algorithm, an efficient linear population-size reduction mechanism is applied. Moreover, an archive is employed to store older effective solutions. The provided results show that the proposed variant of DEDMNA is able to solve 64 out of 160 optimisation problems. Moreover, DEDMNA outperforms the efficient adaptive j2020 variant in 102 problems, and it is worse only in 15 problems out of 160. From the comparison of DEDMNA with five state-of-the-art DE algorithms, the superiority of DEDMNA is obvious.
Annotation in english language:
References
Reference
R01:
RIV/61988987:17310/21:A2202A06
Complementary Content
Deferred Modules
${title}
${badge}
${loading}
Deferred Modules