OU Portal
Log In
Welcome
Applicants
Z6_60GI02O0O8IDC0QEJUJ26TJDI4
Error:
Javascript is disabled in this browser. This page requires Javascript. Modify your browser's settings to allow Javascript to execute. See your browser's documentation for specific instructions.
{}
Zavřít
Publikační činnost
Probíhá načítání, čekejte prosím...
publicationId :
tempRecordId :
actionDispatchIndex :
navigationBranch :
pageMode :
tabSelected :
isRivValid :
Typ záznamu:
stať ve sborníku (D)
Domácí pracoviště:
Ústav pro výzkum a aplikace fuzzy modelování (94410)
Název:
On Manifold Weight Assignment Related to Fuzzy Partition
Citace
JANEČEK, J. a Perfiljeva, I. On Manifold Weight Assignment Related to Fuzzy Partition.
In:
ISCAMI 2020: Proceedings of the 21st International Student Conference on Applied Mathematics and Informatics 2020-09-08 Malenovice.
Ostrava: Ostravská univerzita, 2020. s. 38-39. ISBN 978-80-7599-199-7.
Podnázev
Rok vydání:
2020
Obor:
Obecná matematika
Počet stran:
2
Strana od:
38
Strana do:
39
Forma vydání:
Tištená verze
Kód ISBN:
978-80-7599-199-7
Kód ISSN:
Název sborníku:
Proceedings of the 21st International Student Conference on Applied Mathematics and Informatics
Sborník:
Mezinárodní
Název nakladatele:
Ostravská univerzita
Místo vydání:
Ostrava
Stát vydání:
Sborník vydaný v ČR
Název konference:
ISCAMI 2020
Místo konání konference:
Malenovice
Datum zahájení konference:
Typ akce podle státní
příslušnosti účastníků akce:
Celosvětová akce
Kód UT WoS:
EID:
Klíčová slova anglicky:
dimensionality reduction, LLE, fuzzy partition
Popis v původním jazyce:
We assume that a given high-dimensional data is embedded into a differentiable manifold. At the beginning, this manifold is unknown. The purpose is to characterize this manifold using its substantial parameters extracted from the sampled data. We would like to chacterize the closeness between data points. In this research, we focus on the locally linear embedding (LLE) algorithm. If we assume that two points are close enough, the LLE determines their non-zero closeness. The sum of the closeness values between a fixed point and all points that are close enough, is normalized to 1. The values of closeness are stored in an adjacency matrix W of the corresponding weighted graph representation of the data. If, for example, we assume that the point x has two neighbours, y and z producing non-singular correlation matrix, we showed that the closeness between the points x and y is equal to ... Another way to determine the closeness values is by their extraction from a fuzzy partition. We found cases in which we can redesign the basic function so that the weights given by the LLE and by the fuzzy partition coincide. The corresponding F1-transform component (determined by the weighted inner product given by the same fuzzy partition unit) is compared with lower-dimensional embedding given by the LLE.
Popis v anglickém jazyce:
Seznam ohlasů
Ohlas
R01:
Complementary Content
Deferred Modules
${title}
${badge}
${loading}
Deferred Modules